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Outline

Metabolomics as an emerging resources

- The PC-PR2 technique to investigate drivers of

variability in large dimension data

- Biomarker discovery strategy

The meeting-in-the-middle (MITM) principle

- Applications from the EPIC study
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Metabolomics

Comprehensive and quantitative analysis of
wide arrays of metabolites in biological samples

- Progressively available in prospective
epidemiological investigations

Powerful tool for potential identification of
causal pathways in disease development

- Need for statistical methodologies
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The EPIC Study

Prospective cohort with
500,000 participants from
23 centres

- Dietary and lifestyle
exposures assessed at
baseline

- Biological samples collected
at baseline from 80%
disease-free participants
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EPIC study on HCC

Nested case-control study on hepatocellular

carcinoma (HCC)

- 147 cases and 147 matched controls

132 blood metabolites acquired in cancer-free

individuals with Biocrates AbsoluteIDQ-p180

Kit using UPLC coupled to mass spectrometer
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Explore variation in -omics data

Before doing anything else, spend time
exploring variability in metabolomics data

What drives systematic variation in -omics?

Subjects general characteristics (e.g. age, BMI,
smoking status)

Variables describing samples’ technical
treatment (e.g., serum clot contact time,
length of storage, fasting status)
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Biocrates metabolites
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The structure of -omics data

Standard scenario
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The structure of -omics data (ii)

New generation scenario

10 / 38



The structure of -omics data (ii)

Metabolomics
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A practical approach

- Run principle component analysis (PCA)

- Retain the first q (q � p) components
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Displaying PCA structure
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A new method: PC-PR2

Only two components at the time are displayed

- Only one explanatory factor can be visualised

- Important inter-correlations between
explanatory variables NOT accounted for

Principal Component Partial R-square
(PC-PR2) method developed
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Analytical steps of PC-PR2

(a) Perform PCA on the -omics data

(b) Retain q components, explaining -omics
variability above a given threshold, ie. 80%

(c) Fit q linear regression models, where each
component (dependent variables) is explained
in terms of k explanatory variables
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Step (c) of PC-PR2

For each component q with (q = 1, . . . , qtot)

PCqi = β0 + β1X1i + . . . + βkXki + εqi

with (i=1,. . . , n) and εqi ∼ N(0, σ2
εq),
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Analytical steps of PC-PR2 (ii)

(c) Fit q linear regression models, where each
component (dependent variables) is explained
in terms of k explanatory variables

(d) Determine the R2
partial(q,k) for each explanatory

variable, in each model q

For each k variable, determine an overall
R2
partial(k) as a weighted average, using

eigenvalues as weights
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Step (d) of PC-PR2

The partial R-square (R2
partial) is a statistics

quantifying the amount of variability of the

dependent variable that each explanatory

variable Xk contributes to explain, conditional

on the other (k-1) variables in the model

R2
partial(X1)q
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Analytical steps of PC-PR2 (ii)

(c) Fit q linear regression models, where each
component (dependent variables) is explained
in terms of k explanatory variables

(d) Determine the R2
partial(q,k) for each explanatory

variable, in each model q
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Step (e) of PC-PR2

For each variable k, over the q PCs:

R2
partial(X1) =

∑
R2
partial(X1)qwq

R2
partial(X2) =

∑
R2
partial(X2)qwq

. . .

R2
partial(XK) =

∑
R2
partial(XK)qwq
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Step (e) of PC-PR2 (ii)

For each variable k, over the q PCs:

R2
partial(XK) =

∑
R2
partial(XK)qwq

- where wq = λq/
∑
λq, for (q = 1, . . . , qtot)

with λq = eigenvalue that expresses the
amount of variability captured by PCq
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The PC-PR2 analysis

(Fages & Ferrari et al., Metabolomics, 2014)
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Biomarker discovery

Feature 1

Feature 2

Feature ...

Feature p

Biomarker
Dietary

Exposure
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Diet and polyphenols, n=475

Exposure1 Selected PP2 r̂adj AUC3 (95% CI)

Coffee Single PP (caffeic acid) 0.42 86% (78%, 94%)

PP by LASSO (p=11) 0.51 89% (83%, 95%)

Red wine Single PP (Gallic acid EE) 0.66 89% (84%, 95%)

PP by LASSO (p=2) 0.66 89% (84%, 95%)

1 24-hour dietary recall measurements; 2Urinary poliphenols metabo-

lites measured by UPLC-ESI-MS/MS in 24-hour urine; 3Estimated

by cross-validation in test and training sets.

(Noh et al., submitted to JN)
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Meeting-in-the-middle (MITM)

Biomarkers

Lifestyle
exposure Cancer

(Vineis & Perera, CEBP, 2007)
28 / 38



Meeting-in-the-middle (MITM)

Biomarkers

Lifestyle
exposure Cancer

(Assi et al., Mutagenesis, 2015)
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Analytical strategy of MITM

Metabolomics

BMI HCC

1. Characterization
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Analytical strategy of MITM

Metabolomics

BMI HCC

1. PLS analysis 2. Etiology

2. Etiology

31 / 38



Analytical strategy of MITM

Metabolomics

BMI HCC

1. PLS analysis
2. Logistic

regression

2. Logistic
regression

3. Mediation
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1. BMI-driven PLS factor

Metabolites Loadings

Glutamine -0.19

Glutamate 0.23

Tyrosine 0.24

Lyso PC a C17:0 -0.22

Lyso PC a C18:2 -0.23

PC ae C36:2 -0.20

Liver function score 0.19

(Assi et al., submitted to PLOS Medicine)
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2. BMI and HCC

Exposure OR1 (95%CI) pvalue

BMI 1.23 (0.93, 1.62) 0.149

Metabolites, PLS score 4.04 (2.22, 7.36) 4.8E-07

% Mediated2 100

1 Expressing HCC relative risk estimate of 1-SD increase in the

PLS score; 2 Estimated as ln(NIE)/[ln(NIE)+ln(NDE)], with

NIE=natural indirect effect, NDE=natural direct effect.

(Assi et al., submitted to PLOS Medicine)
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Limitations

Sample size, accuracy, reliability

- Mediation analysis offers a framework to link

inter-correlated factors, but . . .

It involves massive use of underlying

assumptions, i.e. chronological sequence,

confounding structure
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Concluding remarks

Strategies that tackle the complexity of dietary
(and lifestyle) exposures are to be commended

- Vastly unexplored potential of -omics data

But again, clearly biology is way more complex
than statistical modeling

- Key to create multi-disciplinary settings, with a
common language
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