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Causal Inference and Big Data

Measuring human activity has generated massive datasets with granular
population data: e.g.,

Electronic medical records
Genetic markers, Microbiome
Browsing, search, and purchase data from online platforms
Administrative data: schools, criminal justice, IRS

Big in size and breadth: wide datasets

Data can be used for personalization of treatments, creating markets,
modeling behavior

Many inferential issues: e.g., unknown sampling frames, heterogeneity,
targeting optimal treatments, compound loss functions
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Prediction versus Causal Inference

Causal Inference is like a prediction problem: but predicting something we
don’t directly observe and possibly cannot estimate well in a given sample

ML algorithms are good at prediction, but have issues with causal inference:

Interventions imply counterfactuals: response schedule versus model prediction
Validation requires estimation in the case of causal inference
Identification problems not solved by large data
Predicting the outcome mistaken for predicting the causal effect

targeting based on the lagged outcome
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Classical Justifications Versus ML Pipelines

Two different justifications for statistical procedures:

1 (classical) statistical theory:
it works because we have relevant theory that tells us it should
Hopefully, this is not simply: “Assume that the data are generated by the
following model . . .” (Brieman 2001)

2 Training/test loop:
it works because we have validated against ground truth and it works

On the normal distribution:

“Everyone believes in it: experimentalists believing that it is a
mathematical theorem, mathematicians believing that it is an empirical
fact.” — Henri Poincaré (quoted by de Finetti 1975)
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Even Classical Justifications Should be Validated

Question: coverage for the population mean. Is n = 1000 enough?

Sometimes, no. Not for many metrics, even when they are bounded

For some metrics, asking for 95% CI results in only 60% coverage

Data is very irregular
Many zeros, IQR: 0

p100− p99

p99− p50
> 10, 000
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Conditional Average Treatment Effect (CATE)

Individual Treatment Effect (ITE): Di := Yi (t)− Yi (c)

Let τ̂i be an estimator for Di

τ(xi ) is the CATE for all units whose covariate vector is equal to xi :

CATE := τ(xi ) := E
[
D
∣∣∣X = xi

]
= E

[
Y (t)− Y (c)

∣∣∣Xi = xi
]
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Variance of Conditional Average Treatment Effect

CATE := τ(xi ) := E
[
D
∣∣∣X = xi

]
= E

[
Y (t)− Y (c)

∣∣∣Xi = xi
]

Decompose the MSE at xi :

E
[
(Di − τ̂i )2|Xi = xi

]
=

E
[
(Di − τ(xi ))2|Xi = xi

]︸ ︷︷ ︸
Approximation Error

+ E
[
(τ(xi )− τ̂i )2|Xi = xi

]︸ ︷︷ ︸
Estimation Error

Since we cannot estimate Di , we estimate the CATE at xi

But the error for the CATE is not the same as the error for the ITE
Supplementary
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GOTV: Social pressure (Gerber, Green, Lairmer, 2008)
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Pulmonary Artery Catheterization (PAC)

Pulmonary Artery Catheterization (PAC): monitoring device commonly
inserted into critically ill patients

Detecting complications, but invasive to patients and significant expenditure

Question: does PAC have effect on patient survival?

Observational study (Connors et al, 1996): PAC had an adverse effect on
patient survival and led to increased cost of care

Subgroups and better methods for combining RCT and observational data:
Hartman, Grieve, Ramsahai, Sekhon 2015
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Pulmonary Artery Catheterization (PAC) Experiment
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How to estimate the CATE?

Meta–learners

A meta–learner decomposes the problem of estimating the CATE into several
sub–regression problems. The estimator which solve those sub–problems are called
base–learners

Flexibility to choose base–learners which work well in a particular setting

Deep Learning, (honest) Random Forests, BART, or other machine learning
algorithms
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How to estimate the CATE?

τ(x) = E[Y (1)− Y (0)|X = x ]

= E[Y (1)|X = x ]− E[Y (0)|X = x ]

= µ1(x)− µ0(x)

T–learner

1.) Split the data into control and
treatment group,

2.) Estimate the response functions
separately,

µ̂1(x) = Ê[Y obs |X = x ,W = 1]

µ̂0(x) = Ê[Y obs |X = x ,W = 0],

3.) τ̂(x) := µ̂1(x)− µ̂0(x)

S–learner

1.) Use the treatment assignment as a usual
variable without giving it any special role
and estimate

µ̂(x ,w) = Ê[Y obs |X = x ,W = w ]

2.) τ̂(x) := µ̂(x , 1)− µ̂(x , 0)
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µ̂0(x) = Ê[Y obs |X = x ,W = 0],

3.) τ̂(x) := µ̂1(x)− µ̂0(x)

S–learner

1.) Use the treatment assignment as a usual
variable without giving it any special role
and estimate
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µ̂(x ,w) = Ê[Y obs |X = x ,W = w ]

2.) τ̂(x) := µ̂(x , 1)− µ̂(x , 0)

Jasjeet Sekhon (UC Berkeley) Policy and Evaluation in the Age of Big Data July 7, 2017 12 / 20



Motivating X
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Formal defintion of the X–learner

τ(x) = E[Y (1)− Y (0)|X = x ]

= E[Y (1)− µ0(x)|X = x ]

with µ0(x) = E[Y (0)|X = x ].

X–learner

1.) Estimate the control response function,

µ̂0(x) = Ê[Y (0)|X = x ],

2.) Define the pseudo residuals,

D̃1
i := Yi (1)− µ̂0(Xi (1)),

3.) Estimate the CATE,
τ̂(x) = Ê[D̃1|X = x ].
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X in algorithmic form

1: procedure X–Learner(X ,Y obs ,W )

2: µ̂0 = M1(Y 0 ∼ X 0) . Estimate response function
3: µ̂1 = M2(Y 1 ∼ X 1)

4: D̃1
i := Y 1

i − µ̂0(X 1
i ) . Compute pseudo residuals

5: D̃0
i := µ̂1(X 0

i )− Y 0
i

6: τ̂1 = M3(D̃1 ∼ X 1) . Estimate CATE
7: τ̂0 = M4(D̃0 ∼ X 0)

8: τ̂(x) = g(x)τ̂0(x) + (1− g(x))τ̂1(x) . Average

Algorithm 1: X–learner
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Theorem 1

Theorem covers the case when estimating the base functions is not beneficial

Künzel, Sekhon, Bickel, Yu 2017

Assume we observe m control and n treatment units,

1.) Strong Ignorability holds: (Y (0),Y (1)) ⊥W |X 0 < e(X ) < 1

2.) The treatment effect is linear, τ(x) = xTβ

3.) There exists an estimator µ̂0 with E[(µ0(x)− µ̂0(x))2] ≤ C 0
xm

−a

Then the X-learner with µ̂0 in the first stage, OLS in the second stage, achieves the
parametric rate in n,

E
[
‖τ(x)− τ̂X (x)‖2

]
≤ C 1

xm
−a + C 2

x n
−1

If there are a many control units, such that m � n1/a, then

E
[
‖τ(x)− τ̂X (x)‖2

]
≤ 2C 1

x n
−1
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Theorem 2

Theorem covers the case when estimating the CATE function is not beneficial

Künzel, Sekhon, Bickel, Yu 2017

X–learner is minimax optimal for a class of estimators using KNN as the base leaner.
Assume:

Outcome functions are Lipschitz continuous

CATE function has no simplification

Features are uniformly distributed [0, 1]d

The fastest possible rate of convergence for this class of problems is:

O
(

min(n0, n1)−
1

2+d

)
The speed of convergence is dominated by the size of the smaller assignment group

In the worst case, there is nothing to learn from the other assignment group
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Data Simulation: Social pressure and Voter Turnout
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Conclusion

We expect more from our experiments than ever before

We should protect the Type I error rate—e.g., honest Random Forests,
cross-fitting

Lots of observational data, massive push to use it: could be used to help
estimate control outcomes
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Thanks

Peter Bickel

Richard Grieve

Erin Hartman

Sören Künzel

Roland Ramsahai

Bin Yu

http://sekhon.berkeley.edu
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Blocking/Post-Stratification

Minimizes the pair-wise Maximum Within-Block Distance: λ
(Higgins, Sävje, Sekhon 2016; Sävje, Higgins, Sekhon 2017)

Any valid distance metric; triangle inequality

We prove this is a NP-hard problem

Ensures good covariate balance by design: approximately optimal: ≤ 4× λ
Works for any number of treatments and any minimum number of
observations per block

It is fast: O(n log n) expected time

It is memory efficient: O(n) storage

Special cases
1 with one covariate: λ
2 with two covariates: ≤ 2× λ
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Space Complexity
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Pulmonary Artery Catheterization (PAC). Elective Surgery:
Subgroups, effects on net incremental benefit
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Regression Trees

http://freakonometrics.hypotheses.org/1279
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Random Forest = Many “random” Trees

Supplementary
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CATE := τ̂(x) = f (x ,w = 1)− f (x ,w = 0)

T-Learner S-Learner Causal Forest
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CATE := τ̂(x) = f (x ,w = 1)− f (x ,w = 0)

T-Learner S-Learner Causal Forest

Honesty (Biau and Scornet, 2015; Scornet, 2015)

A tree estimator is honest iff the tree structure does not depend on the Y values
used for leaf predictions:

Purely random tree

Wager and Athey (2017) definition of Causal Forest: Split the data and use
half of it to span the tree
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The averaging effect of Random Forest
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Honest versus adaptive fitting
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Using the same data for the partitioning and the leaf estimates can lead to
over-fitting
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Honest versus adaptive fitting
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Individual Treatment Effects: Information Theory Bound

Yu ∼ P = N(µ, σ2), and we want to predict a new Yi .
Our expected risk with infinite data is:

E(µ− Yi )
2 =

σ2 = α

With one data point?

E (Yi − Yu)2 = E (Yi − µ+ Yu − µ)2

= E (Yi − µ)2 + E (Yu − µ)2

= 2σ2

= 2α

General results for Cover-Hart class, which is a convex cone (Gneiting, 2012)
Back to CATE
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