

Reduce, score*, regress, repeat: using factor analysis to tackle multicollinear HDL metabolomics data in seven CHD studies

Amy Mulick[†] Research Fellow, Medical Statistics Department London School of Hygiene and Tropical Medicine London, UK

⁺With JP Casas and David Prieto at UCL Institute of Health Informatics and George Ploubidis at UCL Institute of Education

Cholesterol: bad and good?

Observational and causal evidence shows that low levels of 'bad' cholesterol (carried in low-density lipoproteins, LDL-C) is associated with a lower risk of coronary heart disease (CHD)

Frustratingly, the same has not been shown for 'good' (high-density, HDL-C) cholesterol. Causal studies failed to prove that high levels reduce this risk

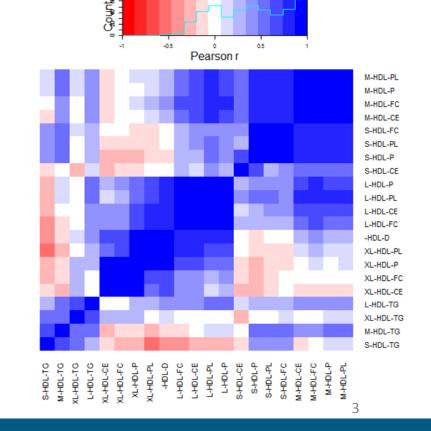
Maybe HDL-C is the wrong biomarker.

Hypothesis: more information from the HDL pathway is needed to adequately describe the risk of CHD

LDV-C

Metabolomic components of HDL

			HDL	-C	
XL-HDL	= CE	+ FC	+ TG +	PL	
L-HDL	= CE	+ FC	+ TG +	PL	CE: cholesterol esters FC: free cholesterol TG: triglycerides
M-HDL	= CE	+ FC	+ TG +	PL	PL: phospholipids
S-HDL	= CE	+ FC	+ TG +	PL	



N=3780; CHD events=313

4

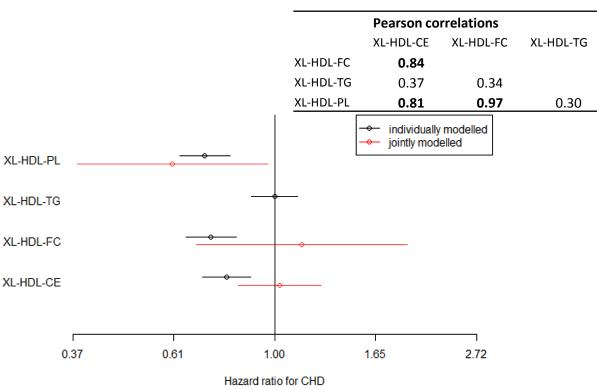
New (independent) biomarkers often identified through joint modelling, but this does not work in the presence of strong collinearity.

With high-dimensional data, it may be more appropriate to think of biomarkers as patterns of expressions.

Methodological problem:

It is unclear how to detect patterns when data come from multiple studies.

Collinearity



Analysis plan

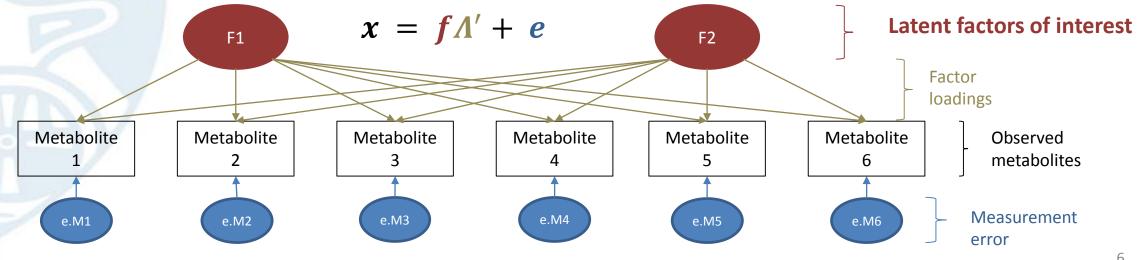
- REDUCE: perform Factor Analysis of HDL metabolites, reducing them to a smaller number of latent factors (metabolite patterns)
 SCORE*: use factor analysis solution to predict values (scores) for the latent factors
- **REGRESS**: model latent factor scores in covariate-adjusted Cox regression
- **REPEAT:** do this for all seven studies

Then:

Pool log hazard ratios in a meta-analysis

(Exploratory) Factor Analysis

Suppose *p* metabolites are expressed by *k<p* underlying metabolic processes Factor analysis can estimate qualitative and quantitative information on them



 $x = f\Lambda' + e$

(Exploratory) Factor Analysis

STEP 1: Λ ESTIMATION We estimate Λ indirectly by estimating e (details omitted) using maximum likelihood

STEP 2: Λ **ROTATION** For interpretability we obliquely rotate $\widehat{\Lambda}$ using the quartimin criterion, producing $\widehat{\Lambda}^*$

STEP 3: f PREDICTION f is predicted from $\widehat{\Lambda}^*$ and $\widehat{\Phi}$ (the k x k factor correlation matrix) using the 'regression' method: $\widehat{f} = \widehat{\Phi} \widehat{\Lambda}^* \Sigma^{-1} x$

The 'loadings' of $\widehat{\Lambda}^*$ are measures of association between observed variables and latent factors

28 March 2017

8

*It is unclear how to handle this across multiple studies.

To predict the 'same' thing, we need one estimate of $\widehat{\Phi}$ and $\widehat{\Lambda}^*$. But seven studies = seven solutions. Which to use?

We considered some options:

- Perform a Confirmatory Factor Analysis and validate the first study's factors.
- Pool all IPD, get one correlation matrix (Σ), and perform one factor analysis?
- Don't pool IPD but get seven correlation matrices and pool them, then perform one factor analysis?
- Perform seven factor analyses, pool the loading matrices (Λ) and factor correlation matrix (Φ), and use these to predict scores?
- Perform seven factor analyses and predict scores separately in each study?

- Yes, but no. Collinearity too strong. Failed to converge on a solution
- No. Difficult to define the 'population', mean metabolite concentrations bound to differ.
- No. Correlation matrices are positive semidefinite and no guarantee that pooling them retains this necessary property.
- No. Unknown how to do this in a principled way. Difficult if more studies added.

Yes. We compare \widehat{A}^* for 3-, 4-, 5-factor

solutions between the studies

 $\widehat{f} = \widehat{\Phi} \widehat{\Lambda}^{*'} \Sigma^{-1} x$

Survival analysis

Factor scores (for 3-, 4- and 5-factor solutions)

- scaled to unit SD
- modelled jointly in an age-adjusted Cox regression model
- restricted to individuals free from CHD at baseline and with complete data
- progressive adjustments by known/probable confounders: sex, ethnicity, smoking, systolic blood pressure (SBP), BMI, diabetes, LDL-C

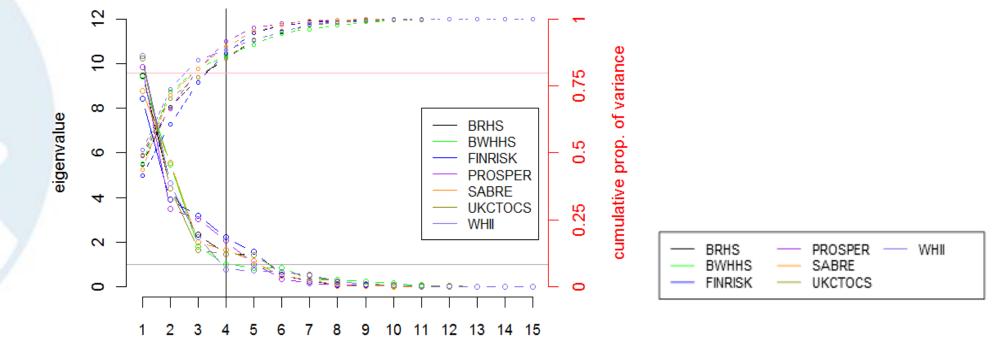
CHD

- fatal
- non-fatal, generally
 - myocardial infarction (MI)
 - coronary artery bypass graft (CABG)
 - percutaneous transluminal coronary angioplasty (PTCA)

Seven studies

STUDY	STUDY TYPE	N	GENDER	MEAN AGE (years)	MEAN FOLLOW- UP (years)
BRHS	cohort	3965	Men	69	9
BWHHS	cohort	3777	Women	69	10
FINRISK (1997)	population cohort	7602	Both	48	13
PROSPER	RCT (statin)	5359	Both	76	3
SABRE	cohort	3297	Both	52	17
UKCTOCS	RCT (cancer screening): nested case-control	3194	Women	65	5
WHII (Wave 5)	cohort	6170	Both	56	6
TOTAL	mixed	33 364	47% female	61	8.9

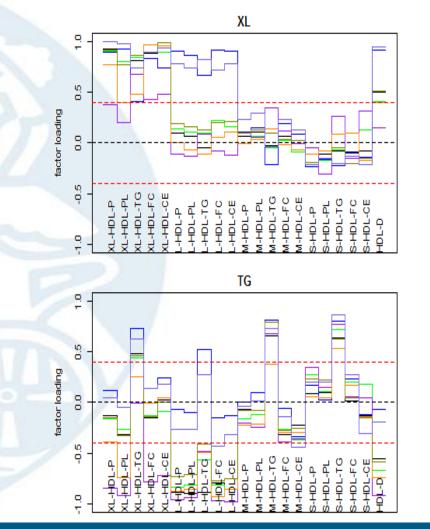
Factor Analysis: variability explained

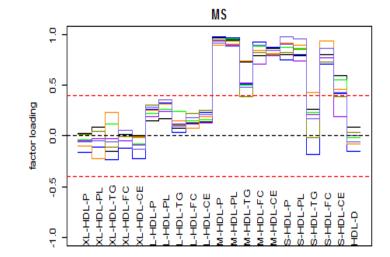


eigenvalue rank

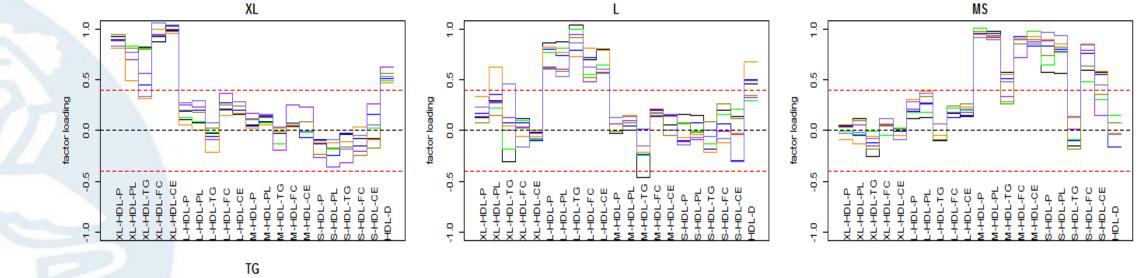
28 March 2017

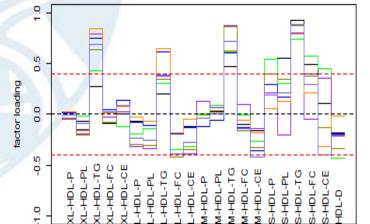
28 March 2017



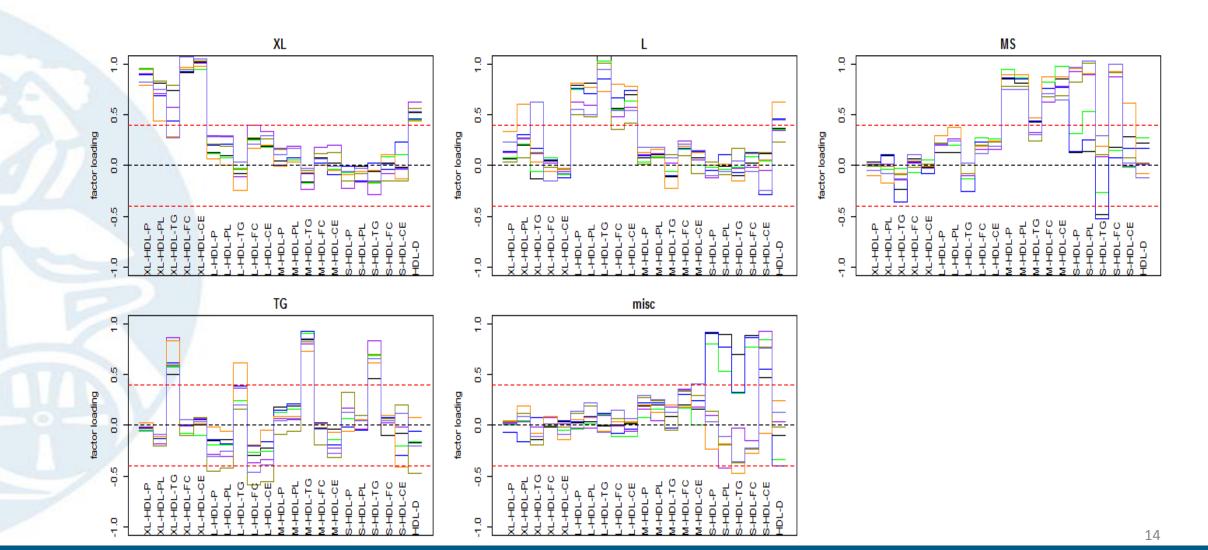


RESULTS: FACTOR ANALYSIS 4





RESULTS: FACTOR ANALYSIS 5

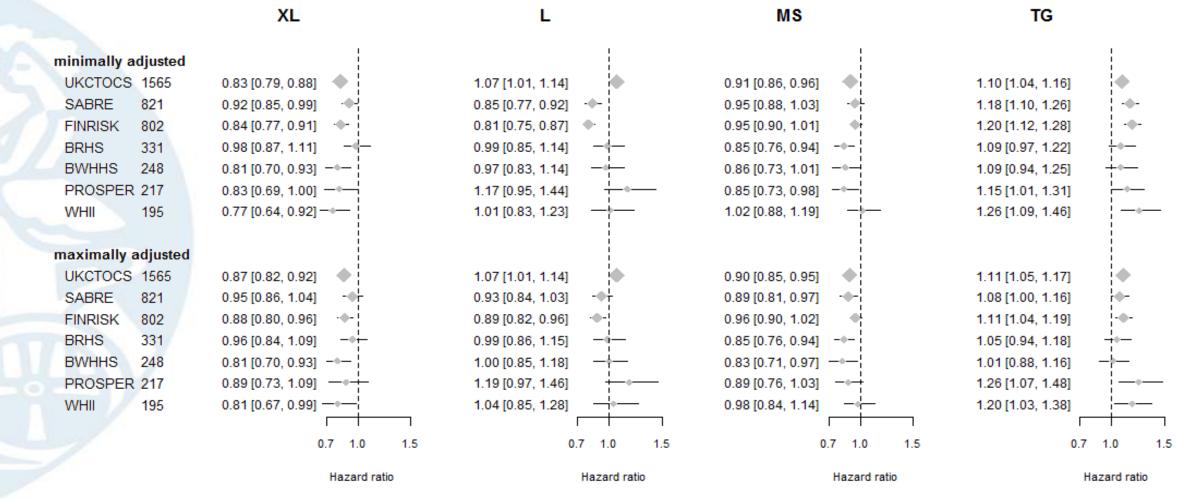


28 March 2017

RESULTS: FACTOR ANALYSIS

- 1. 4 factors explain a sufficient amount of variance and composition is nearly identical in all seven studies, therefore
- 2. This is evidence for the presence of 4 consistent patterns of HDL expression, so
- 3. We can accept the small degree of variability this might have added to our regression results by estimating and predicting them separately in each study, and
- 4. We can combine results in a random-effects meta-analysis
 - log HRs pooled using inverse variance method
 - Between-study heterogeneity estimated using method of DerSimonian and Laird and reported with I² statistic

RESULTS: META-ANALYSIS



RESULTS: META-ANALYSIS

		XL		L		MS	TG	
Free from CHD at baselin	e n=28597; CHD	events n=4179		I^2 (%)		I^2 (%)	I^2 (%)	
Progressively adjusted by: age	0.86 [0.81, 0.91]		0.96 [0.86, 1.08]		0.92 [0.88, 0.96]	- 29	20 🔶	. 1.15 [1.11, 1.19]
+sex	0.88 [0.83, 0.93]		0.98 [0.88, 1.08]		0.93 [0.89, 0.97]		21 -	1.15 [1.11, 1.19]
+ethnicity	0.89 [0.83, 0.95]	65	0.98 [0.88, 1.08]		0.93 [0.89, 0.96]	29	19 🔶	. 1.15 [1.11, 1.19]
+smoking	0.89 [0.83, 0.95]	64	0.98 [0.89, 1.08]		0.92 [0.89, 0.95]	• 0	21 🔶	1.15 [1.10, 1.19]
+SBP	0.89 [0.83, 0.95]	66	0.98 [0.89, 1.08]		0.92 [0.89, 0.95]	• 0	0 🔶	1.13 [1.09, 1.16]
+BMI	0.89 [0.83, 0.95]	63	0.98 [0.90, 1.07]	—•• 76	0.92 [0.89, 0.95]	• 0	0 🔶	1.11 [1.08, 1.15]
+diabetes	0.90 [0.84, 0.96]		0.98 [0.90, 1.08]	— 78	0.92 [0.89, 0.95]	→ 0	0 🔸	1.11 [1.07, 1.14]
+LDL-C	0.88 [0.85, 0.92]	→ 3	1.00 [0.92, 1.08]	66	0.91 [0.87, 0.94]	→ 12	7 🔶	1.10 [1.07, 1.14]
+non-HDL-TG	0.88 [0.84, 0.91]	→ 4	1.00 [0.92, 1.09]	66	0.89 [0.85, 0.94]	→ 41	79 —	<u>1.18</u> [1.04, 1.35]
		0.8 1 1.3		0.8 1 1.3		0.8 1 1.3	0.8 1	1.3
	На	azard ratio		Hazard ratio		Hazard ratio	Hazard ratio	
								17

SUMMARY

- We used (exploratory) factor analysis to estimate patterns in the HDL pathway from highlydimensional metabolomics data in seven datasets
- We identified four patterns that were remarkably consistent across very diverse studies
- Three were associated with the incidence of CHD, one of which was in the opposite direction to the other two
- Our study shows that our present understanding of the relationship between HDL-C and CHD may be oversimplified.

NEXT STEPS (ONGOING)

Compare these HDL metabolomic patterns with HDL genomics.

28 March 2017

19

ACKNOWLEDGMENTS

Research directed by **Professor JP Casas** and statistical analysis directed by **Dr David Prieto** at **UCL Institute of Health Informatics** with funding from the **British Heart Foundation**

UCLEB

UCLEB

UCLEB

SABRF

FINRISK

FINRISK

PROSPER

PROSPER

UKCTOCS

UKCTOCS

UKCTOCS

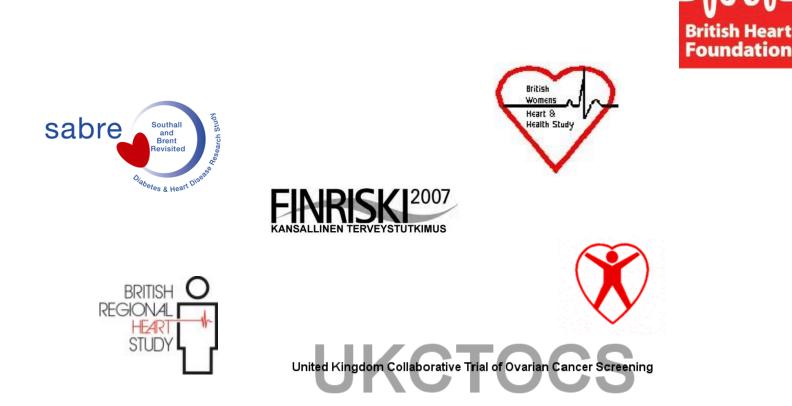
BRHS

BRHS

WHII

Special thanks to:

Aroon Hingorani Jorgen Engmann Tina Shah Therese Tillin Mika Kivimaki Aki Havulinna Veikko Salomaa Charles Boachie Naveed Sattar Goya Wannamethee Barbara Jefferis Usha Menon Andy Ryan Aleksandra Gentry-Maharaj



LOCL

Factor Analysis

The 'common factor' model is (for one observation):

x = fA' + e

Goal to estimate **f** for every observation

Where

x is a $(1 \times p)$ vector of observed metabolites **A** is a $(p \times k)$ 'loading' matrix f is a (1 x k) vector of latent factorse is a (1 x p) vector of 'uniquenesses'

Factor Analysis

 $x = f\Lambda' + e$

STEP 1: ESTIMATION

The factor analysis algorithm estimates e, and thus Λ , using the fact that the correlation matrix Σ of the p observed variables can be decomposed into:

 $\Sigma = \Lambda \Lambda' + \Psi$

Where Ψ is a (p x p) diagonal matrix of e.

 Λ is constructed from the k leading eigenvectors of $\Sigma - \Psi$ after choosing the 'best' Ψ using, e.g., maximum likelihood estimation

Factor Analysis

STEP 2: Λ ROTATION

 Λ is rotated for interpretability: the matrix is transformed by reprojecting its coordinates in Euclidean space. 'Looking at the data from a different angle'

The (rotated) loadings occur generally between -1 and 1 and are measures of association between observed variables and latent factors

Solution obliquely rotated (allowing the final factors to be correlated) using the quartimin criterion

$$\Lambda^* = \Lambda(T')^{-1}$$

Variable	Factor1	Factor2	Factor3	Factor4
metabolite1	0.3806	-0.0559	-0.0742	0.7706
metabolite2	0.7207	-0.0533	-0.2440	0.3744
metabolite3	-0.1958	0.2444	-0.0236	0.4145
metabolite4	-0.0099	0.1222	-0.0433	0.9643
metabolite5	-0.0396	-0.1256	0.1407	0.9907
metabolite6	0.9388	0.0683	0.1124	-0.0124
metabolite7	0.9173	0.0960	0.1583	-0.0792
metabolite8	0.5730	0.0669	0	-0.1672
metabolite9	0.9596	-0.0666	0.0702	0.0648
metabolite10	0.9070	0.0473	0.0622	0.0939

.....

$\widehat{f} = \widehat{\Phi} \widehat{\Lambda}^{*'} \Sigma^{-1} x$

We decided to perform the factor analysis and predict factor scores separately in ALL studies

Pilot data suggested there would be between 3 and 5 factors: we compare Λ results for those solutions between the studies

If we find 'same' factors, we use within-study Λ to predict scores within studies and accept the small degree of variability this might add to our regression results between studies