Time series regression: advancements in this new tool for epidemiological analyses

Part II: multi-city analysis

Antonio Gasparrini and Ben Armstrong

London School of Hygiene and Tropical Medicine

23 February 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Multi-city analysis

Time series analysis on environmental stressors often involves data from multiple cities

The reason: health effects usually change depending on **city-specific modifiers**, such as:

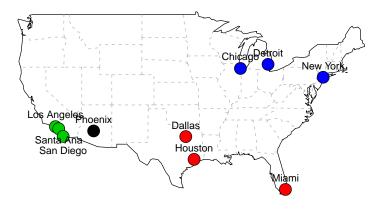
- climatic factors
- demographic factors
- socio-economic characteristics
- prevalence of air conditioning

(日)、

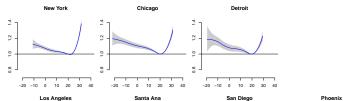
An example

<ロト <回ト < 注ト < 注ト

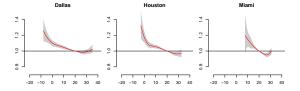
10 biggest NMMAPS cities



Temperature and mortality



Ņ Q 0.8 æ æ -20 -10 -20 -10 -20 -10 -20 -10 30 40



Multi-city analysis

The analytical framework is based on a **two-stage hierarchical design**:

- A first-stage time series regression model to estimate the exposure-response while controlling for potential confounders in each city
- A second-stage meta-analytical model to obtain a pooled estimate and investigate heterogeneity across cities

However, DLNMs hardly fit into this modelling approach

Simple approaches of pooling

Traditional meta-analytic techniques only works for pooling estimates of a **single parameter**

Adopting less sophisticated approaches, this can be achieved by:

- Restricting: seasonal analysis assuming a linear relationship
- Simplifying: linear-threshold parameterization
- Averaging over a predetermined lag period
- **Summarizing**: computing RR for specific absolute or relative temperatures

Limitations

A D F A B F A B F A B F

These approaches, if generally appropriate, may not be suitable for investigating detailed associations. In particular:

- risk of **biases** due to wrong assumptions, or **limited info** on the true non-linear/delayed relationship
- **unbalance** between fairly complex first-stage models, compared to relatively simple second-stage meta-analytic procedures

What if we could **retain complexity** from the first-stage model, allowing the synthesis of more complex summary measures?

Multivariate meta-analysis

Traditionally, an extension of traditional meta-analysis to combine estimates of **multiple outcomes** from RCT

MV-meta may also be applied to combine the estimates of **multi-parameter associations** from different studies

In this case, the estimated coefficients $\hat{\theta}_i$ of the function $s(x_t, \theta_i)$, used in the first stage model to describe the association in each of the i = 1, ..., m cities

Algebraic definition - I

Given the estimated $\hat{\theta}_i$ and associated (co)variance matrix S_i : Within-study model

$$\hat{oldsymbol{ heta}}_i \sim {\sf N}_k(oldsymbol{ heta}_i\,,\,{f S}_i)$$

Between-study model

$$oldsymbol{ heta}_i \sim {\sf N}_k(oldsymbol{ heta}\,,\,oldsymbol{\Psi})$$

with Ψ as the between-study (co)variance matrix

Algebraic definition - II

Marginally:

Multivariate meta-analysis

$$\hat{oldsymbol{ heta}}_i \sim {\sf N}_k(oldsymbol{ heta}\,,\,{f S}_i+oldsymbol{\Psi})$$

Multivariate meta-regression

$$\hat{oldsymbol{ heta}}_i \sim {\sf N}_k({\sf X}_ioldsymbol{eta}\,,\,{\sf S}_i+oldsymbol{\Psi})$$

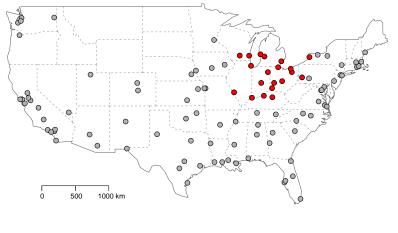
with \mathbf{X}_i as a design matrix obtained by city-level predictors $\mathbf{x}_i = [x_{1i}, x_{2i}, \dots, x_{pi}]^T$

heta (or eta) and components of Ψ need to be estimated

An application

• • • • • • • • • •

20 NMMAPS cities in the Industrial Mid-West region



Two-stage analysis

Investigating the association between temperature and mortality

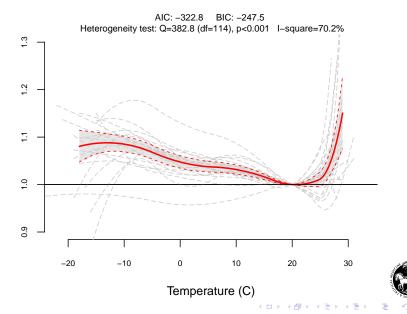
First-stage time series regression model with a **quadratic B-spline**, with:

- Temperature averaged over lag 0-3
- 6 df
- 4 internal knots and 2 boundary knots placed at the same temperatures
- controlled for seasonality and day of the week

Then a second-stage multivariate meta-analysis and meta-regression

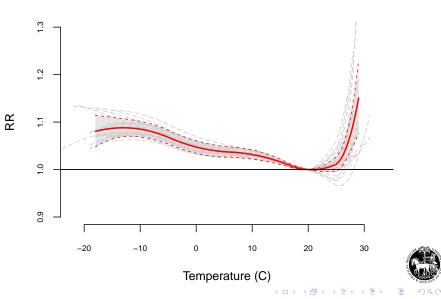
・ロット (雪) (日) (日)

Pooled relationship

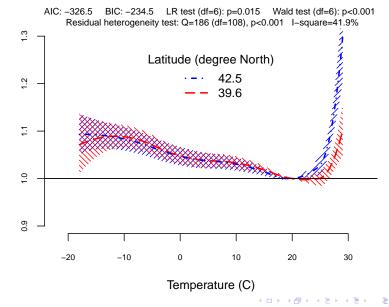


RR

Best linear unbiased prediction



Multivariate meta-regression



RR

DLNMs: a reminder

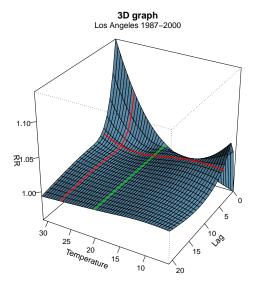
They are specified through a **cross-basis**, a tensor product between the basis matrices **Z** and **C** for predictor and lag, with dimensions v_x and v_ℓ , giving:

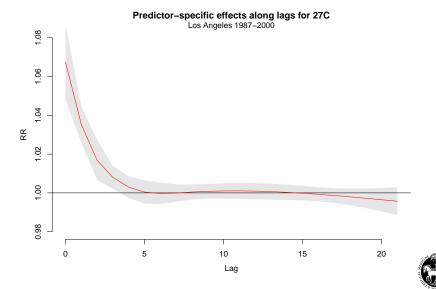
$$s(\mathbf{x}_t; \boldsymbol{\theta}) = \sum_{j=1}^{\mathbf{v}_x} \sum_{k=1}^{\mathbf{v}_\ell} \mathbf{r}_{tj}^{\mathsf{T}} \mathbf{c}_{\cdot k} \theta_{jk} = \mathbf{w}_{t\cdot}^{\mathsf{T}} \boldsymbol{\theta}$$
(1)

The cross-basis matrix **W** has dimension $v_x \times v_\ell$: for complex models, this **dimensionality is not compatible** with multivariate meta-analysis

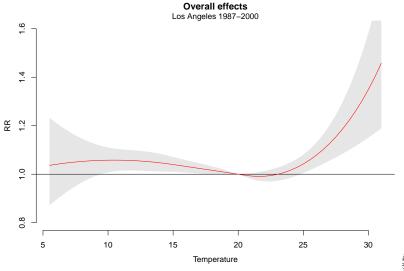
・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Bi-dimensional relationship





Summary - II



イロト イロト イヨト イヨト ニヨート

Reducing DLNMs - I

For a fitted DLNM with estimated parameters $\hat{\theta}$, summaries of the fit may be re-expressed in terms of reduced set of parameters $\hat{\eta}$ of original one-dimensional bases **Z** or **C**.

These reduced parameters are computed through a **transformation matrix M**, by:

 $\hat{\boldsymbol{\eta}} = \boldsymbol{\mathsf{M}}\hat{\boldsymbol{ heta}}$ $\mathrm{V}(\hat{\boldsymbol{\eta}}) = \boldsymbol{\mathsf{M}}\mathrm{V}(\hat{\boldsymbol{ heta}})\boldsymbol{\mathsf{M}}^{\mathsf{T}}$

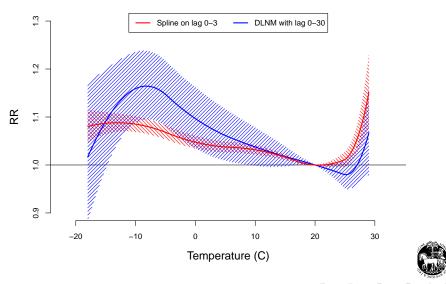
Reducing DLNMs - II

The computation of the matrix ${\bf M}$ is dependent on the type of summary:

$$\mathbf{M} = \begin{cases} \mathbf{I}_{(v_{\ell})} \otimes \mathbf{z}_{[x_0]}^{\mathsf{T}} & \text{for predictor-specific effects at } x_0 \\ \mathbf{c}_{[\ell_0]}^{\mathsf{T}} \otimes \mathbf{I}_{(v_x)} & \text{for lag-specific effects at } \ell_0 \\ \mathbf{1}_{(L+1)}^{\mathsf{T}} \mathbf{C} \otimes \mathbf{I}_{(v_x)} & \text{for overall effects,} \end{cases}$$

Overall effects are computed as $\mathbf{Z}\hat{\eta}$, predictor-specific effects as $\mathbf{C}\hat{\eta}$, with a reduced dimensions v_x and v_ℓ , respectively, more compatible with MV-meta models

Comparison



DLNMs and MV-meta

Distributed lag non-linear models and **multivariate meta-analysis** represent useful statistical tools for time series analysis of environmental factors

The methodologies are implemented in the two R packages dlnm and mvmeta, both available on CRAN $\,$

Methodologies potentially applicable beyond time-series analysis

Next publications

Multivariate meta-analysis for non-linear and other multi-parameter associations. Submitted to Statistics in Medicine (with R code) Reducing and meta-analyzing distributed lag non-linear models. To be submitted soon (with R code)

A general statistical framework for exposure-time-response relationships based on distributed lag models. To be submitted soon (with R code)

R packages

http://cran.r-project.org/web/packages/dlnm/index.html
http://cran.r-project.org/web/packages/mvmeta/index.html

Further questions antonio.gasparrini@lshtm.ac.uk

