

Flexible modelling of the cumulative effects of time-varying exposures

Applications in environmental, cancer and pharmaco-epidemiology

Antonio Gasparrini

Department of Medical Statistics London School of Hygiene and Tropical Medicine (LSHTM)

Centre for Statistical Methodology – LSHTM 28 November 2014

(日)

LSHTM

Gasparrini A

Outline	Introduction	Concepts	Stats	Examples	Software	Extensions	Discussion
Outli	ine						
1	Introductio	on					
2	Conceptua	l model					
3	Statistical	model					
4	Examples						
5	Software						
6	Extensions						
0	Discussion					LO SCI HY &TI MF	NDON HOOL of GIENE OPICAL DICINE

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

2

LSHTM

Gasparrini A

Temporal aspects

The relationship between a risk factor and the associated health effect always implies a **temporal dependency**: a common problem in biomedical research

This issue encompasses study designs and statistical model:

- Tobacco smoke and CVD risk
- Occupational exposure and incidence of cancer
- Drug intake and beneficial or side effects
- Short-term temperature variation and mortality

A topic (somewhat) neglected in methodological research

LSHTM

Gasparrini A

Previous research

Standard statistical approaches do not directly characterize this temporal structure

Challenge: modelling (potentially complex) temporal patterns of risk due to time-varying exposures

Models previously proposed in **cancer epidemiology** (Thomas 1988, Hauptmann 2000, Richardson 2009) and **pharmaco-epidemiology** (Abrahamowicz 2012)

LSHTM

Limitations

Gasparrini A

Incomplete statistical development: e.g. no measures of uncertainty

Poor software implementation: ad-hoc routines, computational issues, convergence problems

Lack of a consistent conceptual and interpretational framework

LSHTM

Image: A math a math

Distributed lag models

DLMs proposed by Almon (Econometrica 1965) in **econometrics** for time series data, then applied in **environmental epidemiology** by Schwartz (Epidemiology 2000).

Armstrong (Epidemiology 2006) extended them to **distributed lag non-linear models** (DLNMs), applicable to non-linear exposure-response associations

A far more developed statistical framework, but **only applicable** to time series data

LSHTM

Gasparrini A

Conceptual representation

Single exposure event

Gasparrini A

Conceptual representation

Multiple exposure events

Gasparrini A

Assumptions

Gasparrini A

Under specific assumptions, these two perspectives can be merged together:

- assumption of identical effects
- (fundamental) assumption of independency

These conditions underpin the **conceptual framework** for defining and modelling DLNMs

LSHTM

Conceptual representation

New lag dimension

Gasparrini A

Outline Introduction Concepts Stats Examples Software Extensions Discussion

Exposure-lag-response associations

The risk is represented by a function $s(x_{t-\ell}, \ldots, x_{t-L})$ defined in terms of both **intensity** and **timing** of a series of past exposures, expressed through:

- an **exposure-response** function f(x) for exposure x
- a lag-response function $w(\ell)$ for lag ℓ

Generating a bi-dimensional **exposure-lag-response** function $f \cdot w(x, \ell)$, whose integral provides:

$$s(x_{t-\ell}, \dots, x_{t-L}) = \int_{\ell_0}^{L} f \cdot w(x_{t-\ell}, \ell) \, d\ell \approx \sum_{\ell=\ell_0}^{L} f \cdot w(x_{t-\ell}, \ell)$$

LSHTM

Gasparrini A

Outline Introduction Concepts Stats Examples Software Extensions Discussion

Distributed lag models (DLMs)

Given a **exposure history** at time *t* for lags $\ell = \ell_0, \ldots, k$:

$$\mathbf{q}_{x_t} = [x_{t-\ell_0}, \dots, x_{t-\ell}, \dots, x_{t-L}]^\mathsf{T}$$

and assuming a linear exposure-response, we can write:

$$s(\mathbf{q}_{x_t}; \boldsymbol{\eta}) = \mathbf{q}_{x_t}^\mathsf{T} \mathbf{C} \boldsymbol{\eta} = \mathbf{w}_{x_t}^\mathsf{T} \boldsymbol{\eta}$$

where **C** is obtained from the lag vector $\boldsymbol{\ell} = [\ell_0, \dots, \ell, \dots, L]^T$ by applying a specific **basis transformation**

LSHTM

< ロ > < 同 > < 回 > < 回 > < 回

Gasparrini A

Distributed lag non-linear models (DLNMs)

First the matrix \mathbf{R}_{x_t} is obtained applying a second basis transformation to \mathbf{q}_{x_t}

Then we define a tensor product:

$$\mathbf{A}_{x_t} = (\mathbf{1}_{v_\ell}^\mathsf{T} \otimes \mathbf{R}_{x_t}) \odot (\mathbf{C} \otimes \mathbf{1}_{v_x}^\mathsf{T})$$

which forms the crossbasis:

$$s(\mathbf{q}_{\mathsf{x}_t}; oldsymbol{\eta}) = (\mathbf{1}_{\mathsf{v}_{\mathsf{x}} \cdot \mathsf{v}_\ell}^\mathsf{T} \mathbf{A}_{\mathsf{x}_t}) oldsymbol{\eta} = \mathbf{w}_{\mathsf{x}_t}^\mathsf{T} oldsymbol{\eta}$$

The problem reduces to choosing a basis for each \mathbf{q}_{x_t} and ℓ , defining **exposure-response** and **lag-response functions**, respectively

LSHTM

Gasparrini A

Alternative study designs

Gasparrini A

LSHTM

First example

Temperature and all-cause mortality

Research area where DLNMs were originally proposed

Time series data with daily death counts and temperature measurements between 1st Jan 1993 and 31st Dec 2006 in London (845,215 deaths in total)

In this setting, exposure histories are simply derived by 'lagging' the temperature series

LSHTM

Gasparrini A

Quasi-Poisson GLM

Analysis with a generalized linear model with quasi-Poisson family, controlling for trends and day of the week

$$\log(\mu_t) = \alpha + s_x(\mathbf{q}_{x_t}; \boldsymbol{\eta}) + \sum_{p=1}^{P} s_z(z_t; \boldsymbol{\beta}_z)$$

Here **spline functions** used to specify both f(x) and $w(\ell)$

LSHTM

Gasparrini A

Exposure-lag-response

LSHTM

Gasparrini A

	Outline	Introduction	Concepts	Stats	Examples	Software	Extensions	Discussion

Summaries

・ロト ・聞 ト ・ ヨト ・ ヨト

LSHTM

Gasparrini A

Second example

Radon exposure and lung cancer mortality

3,347 subjects working in the Colorado Plateau mines between 1950–1960, **258 lung cancer deaths**

Yearly exposure history to radon (WLM) and tobacco smoke $(pack \times 100)$ reconstructed from 5-year age periods

LSHTM

Gasparrini A

Proportional hazard model

Analysis with Cox proportional hazards model using age as time axis, controlling for smoking and calendar year. For subject *i*:

$$\log [h(it)] = \log [h_0(t)] + s_x(\mathbf{q}_{x_{it}}; \boldsymbol{\eta}_x) + s_z(\mathbf{q}_{z_{it}}; \boldsymbol{\eta}_z) + \gamma u_{it}$$

Different functions used to specify f(x) and $w(\ell)$: constant, piecewise constant, quadratic B-spline

LSHTM

Outline	Introduction	Concepts	Stats	Examples	Software	Extensions	Discussion

Exposure-lag-response

Linear-by-constant

LSHTM

Gasparrini A

Outline	Introduction	Concepts	Stats	Examples	Software	Extensions	Discussion

Exposure-lag-response

Spline-by-constant

LSHTM

Gasparrini A

Exposure-lag-response Linear-by-spline

LSHTM

Gasparrini A

Outline	Introduction	Concepts	Stats	Examples	Software	Extensions	Discussion

Exposure-lag-response Step-by-step

LSHTM

Gasparrini A

Outline	Introduction	Concepts	Stats	Examples	Software	Extensions	Discussion

Exposure-lag-response Spline-by-spline

LSHTM

Gasparrini A

Lag-response curves from DLNMs

Gasparrini A

Exposure-responses at different lags

Third example MMR vaccine and ITP risk

Data from **35** children receiving the MMR (measles, mumps, rubella) vaccine months and admitted to the hospital for idiopathic trombocytopenic purpura (ITS) within 12-24 months of age.

Replicating and extending a previous analysis using the **self-controlled case series** design (Whitaker 2006)

LSHTM

Conditional Poisson regression

Analysis with conditional Poisson regression controlling for age. For subject i at age a:

$$\log(\lambda_{iat}) = \alpha_i + s_x(\mathbf{q}_{x_{it}}; \boldsymbol{\eta}_x) + f(a_{it}; \boldsymbol{\gamma})$$

Single exposure event modelled with a binary variable

Exposure-response assumed linear, **lag-response** modelled with spline or piecewise constant functions

LSHTM

Gasparrini A

Fourth example

Tobacco and lung cancer incidence

1,479 cases and **1,918** controls from three case-control studies within the Synergy network

Yearly exposure history to **tobacco smoke** (cigarette/day) reconstructed from questionnaires

LSHTM

Logistic regression

Analysis with logistic regression controlling for sex

$$\operatorname{logit}(\mu_i) = \alpha + s_{x}(\mathbf{q}_{x_i}; \boldsymbol{\eta}_{x}) + \gamma u_i$$

Different functions used to specify f(x) and $w(\ell)$: log, piecewise constant, quadratic B-spline

LSHTM

Image: A matrix and a matrix

Gasparrini A

Outline	Introduction	Concepts	Stats	Examples	Software	Extensions	Discussion

Exposure-lag-response

Log-by-spline

LSHTM

Gasparrini A

Image: A math a math

LSHTM

Gasparrini A

Dynamic prediction of risk

Gasparrini A

Fifth example

Trial on the effect of a drug

50 subjects followed for 4 weeks

Time-varying treatment randomly allocated in two of the four weeks, each with a different dose selected at random

Outcome measured at the end of the 28 days

LSHTM

Linear regression

Analysis with linear regression controlling for sex

$$y_i = \alpha + s_x(\mathbf{q}_{x_i}; \boldsymbol{\eta}_x) + \gamma u_i + \epsilon_i$$

Exposure-response assumed linear

Lag-response modelled with spline or decay functions

LSHTM

· < /⊒ > < ∃

Gasparrini A

Exposure-lag-response linear-by-spline

LSHTM

(≣) ◄

Gasparrini A

Gasparrini A

Software implementation

The framework is **fully implemented** in the R package dlnm, available from the CRAN (Gasparrini *JSS* 2011)

The package contains a **new vignette** focusing on applications beyond time series data

LSHTM

The R package dlnm Example of code

```
library(dlnm)
```

```
cb <- crossbasis(Q,lag=c(2,40),
  argvar=list(fun="bs",degree=2,knots=59.4,cen=0),
  arglag=list(fun="bs",degree=2,knots=13.3,int=F))
```

```
model <- coxph(Surv(agest,ageexit,ind)~cb+smoke+caltime,data)</pre>
```

```
pred <- crosspred(cb,model,at=0:25*10)</pre>
```

```
plot(pred,"3d",xlab="WLM/year",ylab="Lag (years)",zlab="RR")
plot(pred,var=100,xlab="Lag (years)",ylab="RR")
plot(pred,lag=15,xlab="WLM/years",ylab="RR")
```


LSHTM

Outline	Introduction	Concepts	Stats	Examples	Software	Extensions	Discussion

Simulations

Gasparrini A

Penalized DLNMs

Currently, the bi-dimensional **exposure-lag-response** function $f \cdot w(x, \ell)$ is specified using **completely parametric** methods

However, simple DLMs also proposed in a Bayesian (Welty 2008) or penalized versions (Zanobetti 2000, Rushworth 2013, Obermeier 2015)

An obvious extension is to develop a **semi-parametric version** of DLNMs through **penalized splines**

The development may be facilitated by 'embedding' the R package mgcv in dlnm, exploiting the **existing GAM implementation**

Gasparrini A

Interactions in DLNMs

Interactions in DLNMs would allow the exposure-lag-response association varying depending on the value of other predictors (see also Rushworth 2013)

This corresponds to relaxing the assumption of identical effects

This development extends the framework to a wide range of **new** applications

However, it entails non-trivial methodological problems

LSHTM

Outline	Introduction	Concepts	Stats	Examples	Software	Extensions	Discussion

Time-varying DLNMs

LSHTM

・ロト ・ 日 ト ・ 日 ト ・

Gasparrini A

Some advantages

DLNMs offer a flexible way to model **exposure-lag-response** associations

Unified framework based on a general **conceptual** and **statistical** definition, applicable in various study designs

Complete software implementation, models can be fitted with standard regression routines

LSHTM

Gasparrini A

Some limitations

The DLNM framework is only applicable to **time-varying** (non-constant) exposures

It requires the **availability of exposure histories** (possibly reconstructed)

Model selection procedures still under-developed

LSHTM

Image: A math a math

Gasparrini A

Main references

Gasparrini A. Modeling exposure-lag-response associations with distributed lag non-linear models. Statistics in Medicine. 2014;33(5):881-899.

Gasparrini A & Armstrong B. The R package dlnm. http: //cran.r-project.org/web/packages/dlnm/index.html

E-mail: antonio.gasparrini@lshtm.ac.uk

LSHTM

Gasparrini A

Outline Introduction Concepts Stats Examples Software Extensions Discussion

Other references (I)

- Abrahamowicz et al (2006). Modeling cumulative dose and exposure duration provided insights regarding the associations between benzodiazepines and injuries. Journal of Clinical Epidemiology, 59(4):393–403.
- Abrahamowicz et al (2012), Comparison of alternative models for linking drug exposure with adverse
 effects. Statistics in Medicine, 31:1014–1030.
- Almon S (1965). The distributed lag between capital appropriations and expenditures. Econometrica, 33(1):178–196.
- Armstrong (2006). Models for the relationship between ambient temperature and daily mortality. Epidemiology, 17(6): 624–631.
- Berhane et al (2008). Using tensor product splines in modeling exposure-time-response relationships: application to the Colorado Plateau Uranium Miners cohort. Statistics in Medicine, 27(26):5484–96.
- Heaton et al (2014). Extending distributed lag models to higher degrees. *Biostatistics*, 15(2):398-412.
- Gasparrini et al (2010). Distributed lag non-linear models. Statistics in Medicine, 29(21):2224–2234.
- Gasparrini (2011). Distributed lag linear and non-linear models in R: the package dlnm. Journal of Statistical Software, 43(8):1-20.
- Hauptmann et al (2000). Analysis of exposure-time-response relationships using a spline weight function. *Biometrics*, 56(4):1105–8.

A D b 4 A

 Langholz et al (1999). Latency analysis in epidemiologic studies of occupational exposures: application the Colorado Plateau uranium miners cohort. American Journal of Industrial Medicine, 35(3):246–56.

LSHTM

Gasparrini A

Other references (II)

- Leffondre et al (2002). Modeling smoking history: a comparison of different approaches. American Journal of Epidemiology, 156(9):813.
- Obermeier et al (2015). Flexible distributed lag models and their application to geophysical data. *Journal of the Royal Statistical Society: Series B*, ahead of print.
- Richardson (2009). Latency models for analyses of protracted exposures. Epidemiology, 20:395–399.
- Rushworth et al (2013). Distributed lag models for hydrological data. Biometrics, 69:537–544.
- Schwartz (2000). The distributed lag between air pollution and daily deaths. Epidemiology, 11(3):320–326.
- Sylvestre & Abrahamowicz (2009). Flexible modeling of the cumulative effects of time-dependent exposures on the hazard. Statistics in Medicine, 28(27):3437–53.
- Thomas (1983). Statistical methods for analyzing effects of temporal patterns of exposure on cancer risks. Scand J Work Environ Health, 9(4):353–366.
- Thomas (1988). Models for exposure-time-response relationships with applications to cancer epidemiology. Annual Review of Public Health, 9:451–82.
- Welty et al (2008). Bayesian distributed lag models: estimating effects of particulate matter air pollution on daily mortality. *Biometrics*, 65:282-291.

SCHOOL

LSHTM

(日)

Gasparrini A