

Smoothing with penalized splines

A brief introduction and an illustrative application

Antonio Gasparrini

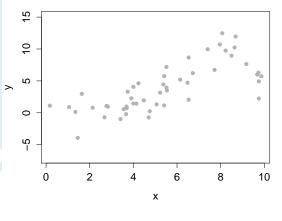
Department of Social and Environmental Health Research London School of Hygiene and Tropical Medicine (LSHTM)

Centre for Statistical Methodology – LSHTM 29 May 2015

• • • • • • • • • • • •

Outline	The issue	Splines	Penalized	Comparison	An extension	Software	Comments
Outl	ine The issue	е					
2	Splines						
	A penaliz	zed app	roach				
4	A compa	rison					
5	An exten	ision					
6	Software						
0	Some co	mments	5			SCH HY &TF	NDON 100Løj GIENE OPICAL DICINE
					• • • • • • • • • • • • • • • • • • •	(→ 国) → モ)	ヨー

Gasparrini A Smoothing with penalized splines LSHTM

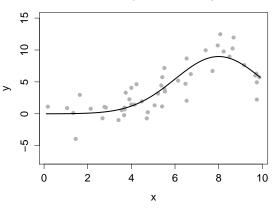

Outline	The issue	Splines	Penalized	Comparison	An extension	Software	Comments
Outl	ine The issue						
10							
50	A penaliz	ed appro	ach				
4	A compar						
5	An exten	sion					
10	Software						
	Some cor	nments				LO SCI HY &TI ME	NDON HOOL of GIENE SOPICAL DICINE
					• • • • • • • • • • • • • • • • • • •	<	E nac

Gasparrini A Smoothing with penalized splines LSHTM

Relationships between x and y

Scatterplot of x and y

LSHTM


A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Gasparrini A

Non-linearity

Scatterplot of x and y

LSHTM

・ロト ・日下 ・日下

Gasparrini A

Regression models

A relationship between a predictor x and an outcome y is usually estimated through **regression models**, controlling for potential confounders

In the simple linear case:

$$y_i = \alpha + f(x_i) + \sum_{\rho=1}^{P} \gamma_{\rho} z_{i\rho}$$
(1)

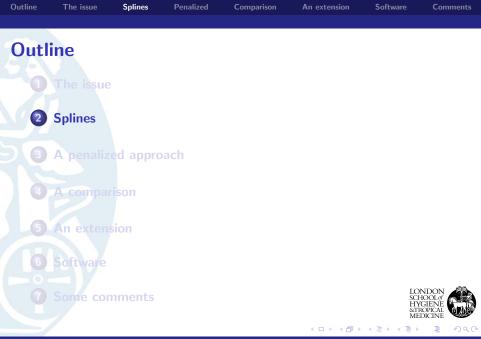
A number of alternative options are available for representing f(x), describing the relationship as a **smooth shape**

LSHTM

Smoothing methods

Parametric Polynomials, fractional polynomials, regression splines

In between Penalized splines


Non-parametric

Lowess, kernel, smoothing splines

LSHTM

Image: A math a math

Gasparrini A Smoothing with penalized splines LSHTM

Splines: basis representation

A spline is a numeric function composed by **piecewise-connected polynomial functions**

The advantage of using regression splines is that f(x) can be represented in a **basis form**:

$$f(x_i;\beta) = \sum_{j=1}^{d} \beta_j b_j(x_i) = \mathbf{x}^{\mathsf{T}} \beta$$
(2)

Image: A math a math

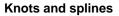
where $b_j(x)$ are a series of d (known) basis transformations of x

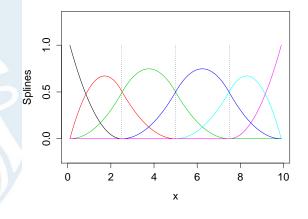
LSHTM

Regression splines

This type of splines allow the use of **standard estimation methods**, derived by minimizing the usual least square objective:

$$\sum_{i=1}^{N} \left(y - \alpha - f(x; \beta) + \sum_{p=1}^{P} \gamma_p z_p \right)^2 = ||\mathbf{y} - \alpha - \mathbf{X}\beta - \mathbf{Z}\gamma||^2 \quad (3)$$

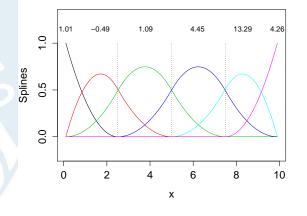

Several different transformations for $b_j(x)$ (*e.g.* B-splines, natural splines), determining the mathematical properties



LSHTM

Graphical representation - I

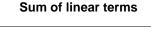
LSHTM

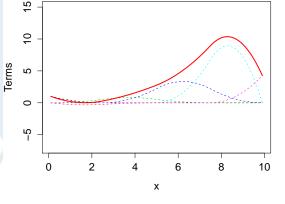

・ロト ・日下 ・日下

Gasparrini A

Graphical representation - II

Splines and coefficients

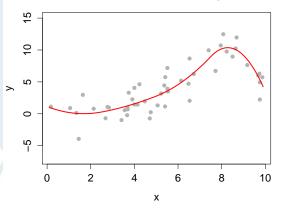

LSHTM


・ロト ・日下 ・日下

Gasparrini A

Graphical representation - III

LSHTM

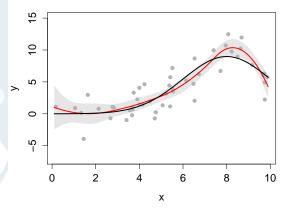

・ロト ・回ト ・ヨト

Gasparrini A

Graphical representation - IV

Estimated relationship

LSHTM


< □ > < □ > < □</p>

Gasparrini A

Graphical representation - V

Estimated and true

LSHTM

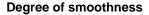
・ロト ・日下 ・日下

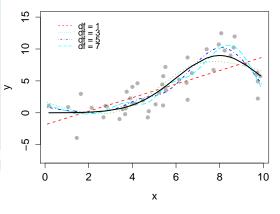
Gasparrini A

Problems and limitations

In regression splines, the **smoothness** of the fitted curve is determined by:

- the degree of the spline
- the specific parameterization
- the number of knots
- the location of knots

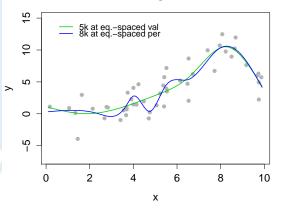

No general selection method for number and position of knots



LSHTM

Number of knots

LSHTM


・ロト ・日下 ・日下

Gasparrini A

Knots location

Best fitting models

LSHTM

・ロト ・日下 ・日下

Gasparrini A

Outline	The issue	Splines	Penalized	Comparison	An extension	Software	Comments
Outli	ne The issue Splines	2					
3	A penaliz A compa		ach				
6	An exten Software	sion					
	Some co	nments					NDON IOOL of GIENE OPICAL DICINE
Gasparrini A	A					< 문) < 문)	≣ ৩৭়ে LSHTM

Generalized additive models

A general framework of smoothing methods is offered by **generalized additive models** (GAMs)

GAMs extends traditional GLMs by allowing the linear predictor to depend linearly on unknown smooth functions. In the linear case:

$$y_i = \alpha + f(x_i) + \sum_{p=1}^{P} f(z_{ip})$$
(4)

where f are traditionally represented by non-parametric terms such as **smoothing splines** of **lowess**

LSHTM

Penalty

The idea is to define a flexible function and control the smoothness through a **penalty term**, usually on the second derivative The objective in (3) is modified to:

$$\sum_{i=1}^{N} \left(y - \alpha - f(x;\beta) + \sum_{p=1}^{P} f(z_{ip}) \right)^2 + \lambda \int [f''(x)]^2 dx \qquad (5)$$

with λ as **smoothing parameter**

LSHTM

Image: A math a math

Penalized splines

However, traditional GAMs are limited by **complex and computationally-heavy** estimation methods

Penalized splines offer an flexible and efficient version of GAM, based on low-rank basis transformations

The objective in (5) can be re-written in matrix terms as:

$$||\mathbf{y} - \alpha - \mathbf{X}\boldsymbol{\beta} - \mathbf{Z}\boldsymbol{\gamma}||^2 + \lambda\boldsymbol{\beta}^{\mathsf{T}}\mathbf{S}\boldsymbol{\beta}$$
(6)

Image: A math a math

where S is a penalty matrix

LSHTM

Smoothers

Alternative smoothers available, differing by **parameterization** and **penalty**:

- Thin-plate splines
- Cubic splines
- P-splines
- Random-effects
- Markov random fields
- Soap film smooths

LSHTM

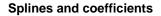
Image: A math a math

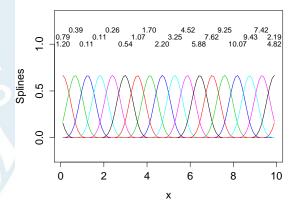
Gasparrini A

٥

Graphical representation - I

Increasing knots and splines


LONDON


LSHTM

Graphical representation - II

LSHTM

Image: A mathematical states and a mathem

Gasparrini A

Graphical representation - III

15 10 Terms 5 0 -5 2 0 6 8 10 х

Sum of linear terms

LSHTM

・ロト ・回ト ・ヨト

Gasparrini A

Estimation

Estimation concerns **coefficients** of penalized and unpenalized terms (α, β, γ) and **smoothing parameters** (λs)

For the former, a **penalized iteratively reweighted least squares** (P-IRLS) scheme is used

Estimation of λ s is integrated through either **outer iteration** or **performance iteration**, using **GCV**, **UBRE/AIC** or **REML**

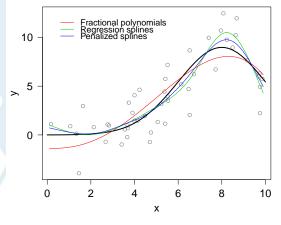
LSHTM

Image: A math a math

Advantages

Relatively **low-rank basis** and **simplified penalties** Completely **parametric form** Number and location of **knots** not critical Automatic **smoothing selection** Efficient **computational methods** Well-grounded **theoretical framework**

LSHTM


Image: A math a math

Outline	The issue	Splines	Penalized	Comparison	An extension	Software	Comments
Outl	ine The issue Splines						
	A penaliz		bach				
4	A compare						
6	Software						
9	Some cor	nments					NDON HOOL of GIENE ROPICAL DICINE
Commini	<u>م</u>				<pre>< d>< d>< d>< d>< d>< d>< d>< d ></pre>	<- 문> < 문>	≣ ୬९୯ LSHTM
Gasparrini	A						LSHIM

Comparison

Comparison of smoothing methods

LSHTM

・ロト ・日下 ・日下

Gasparrini A

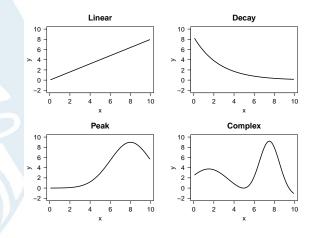
Simulations

Comparing alternative methods:

- Fractional polynomials
- Regression splines
- Penalized splines

Different shapes:

- Linear
- Decay
- Peak
- Complex



LSHTM

Image: A match a ma

Outline	The issue	Splines	Penalized	Comparison	An extension	Software	Comments

Simulated shapes

LSHTM

э

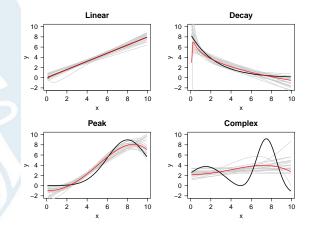
・ロト ・ 日 ト ・ 日 ト ・

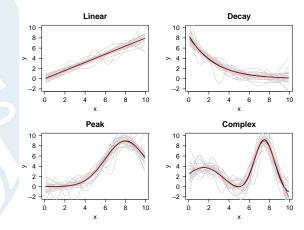
Gasparrini A

Outline	The issue	Splines	Penalized	Comparison	An extension	Software	Comments
	~						

Simulation results - I

Fractional polynomials



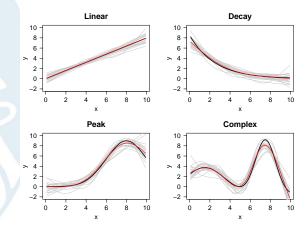

Image: A mathematical states and a mathem

Gasparrini A Smoothing with penalized splines LSHTM

Outline	The issue	Splines	Penalized	Comparison	An extension	Software	Comments
	CV						

Simulation results - II

Regression splines



・ロト ・回ト ・ 回ト ・

Outline	The issue	Splines	Penalized	Comparison	An extension	Software	Comments
	1						

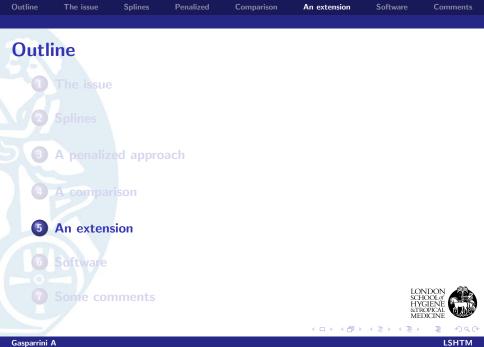
Simulation results - III

Penalized splines

< □ > < □ > < □</p>

Gasparrini A Smoothing with penalized splines LSHTM

Outline	The issue	Splines	Penalized	Comparison	An extension	Software	Comments

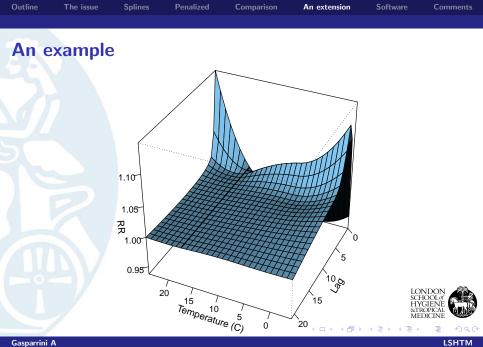

Simulation results - IV Statistics

	Fun	(e)df	Bias	Cov	RMSE
Linear	GLM	2.21	0.01	0.90	0.82
Linear	GAM	1.28	0.00	0.95	0.66
Decay	GLM	3.45	0.05	0.87	0.89
Decay	GAM	2.61	0.13	0.94	0.76
Peak	GLM	4.82	0.05	0.89	0.93
Peak	GAM	4.06	0.19	0.94	0.84
Complex	GLM	6.65	0.11	0.87	1.02
Comples	GAM	5.87	0.31	0.91	0.94

LSHTM

・ロト ・回ト ・ヨト ・ヨ

Distributed lag non-linear models


Statistical tools to model **non-linear** and **lagged** dependencies Defined by a **cross-basis** function of lagged exposures:

$$s(x_{t-\ell_0},...,x_{t-\ell}) = \sum_{\ell=\ell_0}^{L} f \cdot w(x_{t-\ell},\ell)$$
(7)

The function is composed of an **exposure response** function f(x) and a **lag-response** function $w(\ell)$

LSHTM

Smoothing with penalized splines

LSHTM

Tensor product basis

Parameterized by a special tensor product:

$$\mathbf{s}(\mathbf{x}_{t-\ell_0},\ldots,\mathbf{x}_{t-\ell}) = (\mathbf{1}_{L-\ell_0+1}^{\mathsf{T}}\mathbf{A}_t)\boldsymbol{\eta} = \mathbf{w}_t^{\mathsf{T}}\boldsymbol{\eta}$$
 (8)

with

$$\mathbf{A}_{t} = (\mathbf{1}_{v_{\ell}}^{\mathsf{T}} \otimes \mathbf{R}_{t}) \odot (\mathbf{C} \otimes \mathbf{1}_{v_{x}}^{\mathsf{T}})$$
(9)

Image: A math a math

where \mathbf{R}_t and \mathbf{C} are basis matrices for x and ℓ , respectively

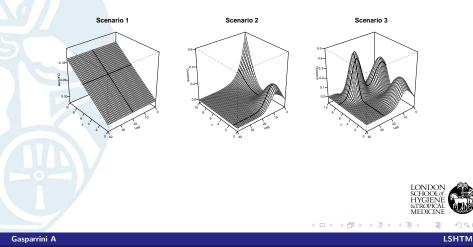
LSHTM

Penalized DLNMs

Question: what about a penalized version of DLNMs? Modify objective in (6) to:

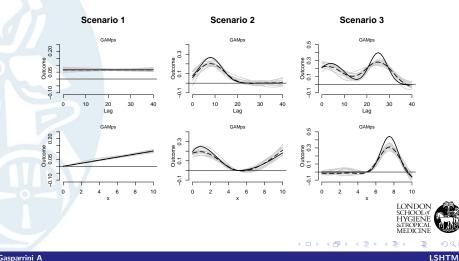
$$||\mathbf{y} - \alpha - \mathbf{W}\boldsymbol{\eta} - \mathbf{Z}\boldsymbol{\gamma}||^{2} + \boldsymbol{\eta}^{\mathsf{T}} \Big(\lambda_{x} \left(\mathbf{1}_{v_{\ell}}^{\mathsf{T}} \otimes \mathbf{S}_{x} \right) + \lambda_{\ell} \left(\mathbf{S}_{\ell} \otimes \mathbf{1}_{v_{x}}^{\mathsf{T}} \right) \Big) \boldsymbol{\eta}$$
(10)

with λ_x , λ_ℓ and S_x , S_ℓ as smoothing parameters and penalty matrices for each dimension



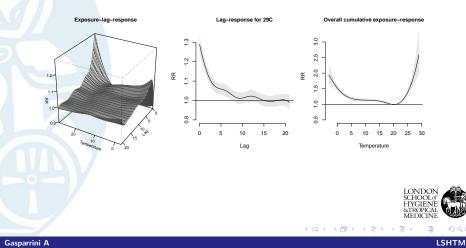
LSHTM

Image: A math a math



Simulated surfaces

Outline	The issue	Splines	Penalized	Comparison	An extension	Software	Comments


Simulation results

Gasparrini A

Outline	The issue	Splines	Penalized	Comparison	An extension	Software	Comments

An application

Smoothing with penalized splines

LSHTM

The R package mgcv

Collection of functions implementing GAMs with penalized splines Written by Simon Wood, extensively documented Example of code:

```
library(mgcv)
model <- gam(y ~ s(x,bs="ps") + z, data, family=gaussian,
method="REML")</pre>
```

The function s determines the spline transformations and penalties

LSHTM

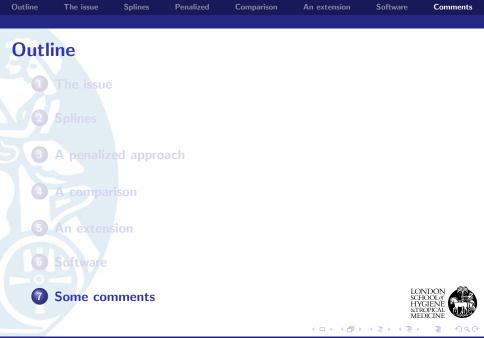
(日) (同) (三) (

The R package dlnm

Collection of functions implementing DLNMs Example of code:

```
library(dlnm)
cb <- crossbasis(x,lag=c(10),
argvar=list(fun="bs",degree=2,knots=5,cen=0),
arglag=list(fun="ns",knots=c(3,6),int=F))
model <- glm(y ~ s(x,bs="ps") + z, data, family=gaussian)
pred <- crosspred(cb,model)
plot(pred,"3d",xlab="x",ylab="Lag",zlab="Effect")</pre>
```


LSHTM


Embedding dlnm and mgcv

```
Example of code:
```

```
library(dlnm) ; library(mgcv)
cb <- crossbasis(x,lag=c(10), argvar=list(fun="ps"),
arglag=list(fun="ps"))
pen <- cbPen(cb)
model <- model <- gam(y ~ cb + z, data, family=gaussian,
method="REML",parapen=list(cb=list(pen)))
pred <- crosspred(cb,model)
plot(pred,"3d",xlab="x",ylab="Lag",zlab="Effect")
```


LSHTM

Gasparrini A Smoothing with penalized splines LSHTM

Some comments

Penalized splines combine the **flexibility** of non-parametric methods with **stability and simplicity** of parametric smoothers Based on **theoretically-grounded** and **computationally-efficient** estimators

Well implemented in the package mgcv in R

Research still ongoing

LSHTM

Image: A math a math