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o Splines in regression models

e Defining constraints to the shape
e Shape constrained additive models
@ Some examples in R

e Extensions and discussion
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Scatterplot of x and y
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True relationship
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B-spline regression

The relationship between the predictor x; and the response y;, with
i=1,...,n, can be defined by a function f:

yi = f(x;)

The function can be approximated by m = p + r B-splines of degree r,
by setting p + 1 knots in the range x; < x < xp:

- f XI Z’ykbk r XI

where by, is the (non-negative) k™ B-spline and - its coefficient
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Spline basis terms
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Estimation

By defining:
~y :[717"'77/("' '7’7m]T
Xi =[b1r(x1)s - bror(X)s - oy b (3]

it is possible to rely on standard estimation methods by minimizing the
least square objective:

n

2 2
> (vi— i) = lly — XAl
i=1
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Splines and coefficients

bkr(x)
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Fitted curve

o |
©
o |
<
> o |
N -5
o 4 B — N
o
(?' T T T T T T
0 2 4 6 8 10
LONDON
X SCHOOLo (%
&TROPICAL
MEDICINE

Gasparrini & Chalabi

Shape-constrained splines



Comparison
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Issues and motivation

Two issues:

© 'Wiggly’ shape: need to define optimal smoothness of the curve

[NB: discussed in a previous CSM seminar]

@ Possibility of imposing shape-constraints on the curve [NB:

today’s topic]

The latter can be based on a priori assumptions: in many biological or
epidemiological phenomena, we can assume for instance monotonic

increasing/decreasing and/or convex/concave associations
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Shape-constraints
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e Defining constraints to the shape
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Shape-constraints

Derivatives of a spline function

For a B-spline function:

m

Fxiv) = Y bk, (x)

k=1

assuming equi-spaced knots at distance z, the derivatives can be
computed as:

=z (= Y1) ber—1(x)
k=2

m
1" -2
f'(x;v) =z E (Vk = 29k—1 + Yk—2) bi,r—2(x)
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Shape-constraints

Imposing constraints

Constraints on the first derivative
A sufficient condition for f/(x;y) > 0is v« — k-1 >0for k=2,....m

Constraints on the second derivative

A sufficient condition for f”(x; ) > 0is vk — 2vk—1 + Yk—2 > 0 for
k=3,....,m

Constraints on linear combinations of the coefficients map into
constraints on the shape of the relationship
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Shape-constraints

In matrix terms

Defining the two difference matrices:

—1 1 0 0 0
0 —1 1 0 0
D; = :
0 0 0 -1 1
Then:
f'(x;v) >0
f’(x;v) >0

Gasparrini & Chalabi

1 -2 1

0 1 -2
D, = :

0 O 0
= D;vy>0
= Dyy>0
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Shape-constraints

Type of constraints

Monotonically increasing: f'(x;;4) >0 = Dyy>0

@ Monotonically decreasing: f'(x;;v) <0 = —-Dyy>0

Convex: f"(x;;v)>0 = Dyy>0

Concave: f”’(x;;v) <0 = —Dyy>0

@ Monotonically increasing and convex: f'(x;;) > 0 and
f'(x;v) >0 = [D{D;]™y>0

Estimation can be performed through linear constrained optimization
using the log-likelihood function LONDON
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Shape-constraints
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e Shape constrained additive models
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Shape-constraints

An extension by Pya and Wood

Pya and Wood (2010, 2015) proposed shape constrained additive
models

This approach simultaneously addresses two issues:

© imposing constraints on the shape through a re-parameterization
of the model

@ defining the optimal smoothness of the curve via additive models
with penalized splines

LONDON
SCHOOLof

&TROPICAL
MEDICINE

Gasparrini & Chalabi LSHTM

Shape-constrained splines



Shape-constraints

Re-parameterization as an unconstrained model

In the case of monotonically increasing shapes, the constraints are
enforced by setting v« — k-1 >0for k=2,...,m

This can also be obtained by re-parameterizing the B-splines with
unconstrained coefficients ¢ as:

k
’71=¢1v7k=¢1+2e¢hk:2,...,m
j=2
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Shape-constraints

Matrix formulation

Setting v = P, with ¢ = [p1,e?,...,e%"]7, and:

1 0 O 0

1 1 0 0
P:

1 1 1 1

the regression model can written in terms of unconstrained working

parameters as:

f(x; ¢) = XPo

Fitted through non-linear unconstrained optimization
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Shape-constraints

Shape constrained penalized splines

The optimal smootheness of the relationship can be found by
penalizing differences between adjacent coefficients (Wood 2006)

The least square objective can be modified to:
ly = XP3|* + 2S¢

where S = DJD; is a known penalty matrix (with Dy previously
defined), and X is a smoothing parameter

LONDON
SCHOOLof

&TROPICAL
MEDICINE

Gasparrini & Chalabi LSHTM

Shape-constrained splines



Shape-constraints

Maximizing the log-likelihood

£,(6.3) =L(9) ~ 516759

oL
J(9) :87¢p

0*L
H(¢) = 8¢2p

Starting from an initial estimate ¢(?), solve iteratively using the
Newton-Raphson method, with:

¢V = o) — H(e) (6"
SChooCy

. . . . . H
This method is integrated with smoothing parameter (\) selection {rgricac
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R examples
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@ Some examples in R
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e Extensions and discussion
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Extensions

Discussion

Interesting method with several potential applications
(Relatively) complex estimation and computational techniques
Comparison of linear constrained and non-linear unconstrained
optimization

Shape constrained additive models fully implemented in the R
package scam
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Extensions

Extensions

Framework already extended to bi-dimensional risk surfaces through a
tensor product basis functions

Not easy to address the original problem that motivated the research:
shape-constrained exposure-lag-response functions
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