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Scatterplot of x and y
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True relationship
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B-spline regression

The relationship between the predictor xi and the response yi , with
i = 1, . . . , n, can be defined by a function f :

yi = f (xi )

The function can be approximated by m = p + r B-splines of degree r ,
by setting p + 1 knots in the range x1 ≤ x ≤ xn:

yi = f (xi ) ≈
m∑

k=1

γkbk,r (xi )

where bk,r is the (non-negative) k th B-spline and γk its coefficient
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Spline basis terms
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Estimation

By defining:

γ =[γ1, . . . , γk , . . . , γm]T

xi =[b1,r (xi ), . . . , bk,r (xi ), . . . , bm,r (xi )]T

it is possible to rely on standard estimation methods by minimizing the
least square objective:

n∑
i=1

(
yi − f (xi ;γ)

)2
= ||y − Xγ||2
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Splines and coefficients

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

b k
r(x

)

71.48

0.18

11.89

−5.59

4.65

4.48

23.55

17.84

56.55

25.36

Gasparrini & Chalabi LSHTM

Shape-constrained splines



Outline Splines Shape-constraints Shape-constraints R examples Extensions

Fitted curve
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Comparison
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Issues and motivation

Two issues:

1 ’Wiggly’ shape: need to define optimal smoothness of the curve
[NB: discussed in a previous CSM seminar]

2 Possibility of imposing shape-constraints on the curve [NB:
today’s topic]

The latter can be based on a priori assumptions: in many biological or
epidemiological phenomena, we can assume for instance monotonic
increasing/decreasing and/or convex/concave associations
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Derivatives of a spline function

For a B-spline function:

f (x ;γ) =
m∑

k=1

γkbk,r (x)

assuming equi-spaced knots at distance z , the derivatives can be
computed as:

f ′(x ;γ) =z−1
m∑

k=2

(γk − γk−1)bk,r−1(x)

f ′′(x ;γ) =z−2
m∑

k=3

(γk − 2γk−1 + γk−2)bk,r−2(x)
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Imposing constraints

Constraints on the first derivative

A sufficient condition for f ′(x ;γ) > 0 is γk − γk−1 > 0 for k = 2, . . . ,m

Constraints on the second derivative

A sufficient condition for f ′′(x ;γ) > 0 is γk − 2γk−1 + γk−2 > 0 for
k = 3, . . . ,m

Constraints on linear combinations of the coefficients map into
constraints on the shape of the relationship
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In matrix terms

Defining the two difference matrices:

D1 =

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
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1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
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 .

Then:

f ′(x ;γ) > 0 ⇒ D1γ > 0

f ′′(x ;γ) > 0 ⇒ D2γ > 0
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Type of constraints

Monotonically increasing: f ′(xi ;γ) > 0 ⇒ D1γ > 0

Monotonically decreasing: f ′(xi ;γ) < 0 ⇒ −D1γ > 0

Convex: f ′′(xi ;γ) > 0 ⇒ D2γ > 0

Concave: f ′′(xi ;γ) < 0 ⇒ −D2γ > 0

Monotonically increasing and convex: f ′(xi ;γ) > 0 and
f ′′(xi ;γ) > 0 ⇒ [DT

1 DT
2 ]Tγ > 0

...

Estimation can be performed through linear constrained optimization
using the log-likelihood function
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An extension by Pya and Wood

Pya and Wood (2010, 2015) proposed shape constrained additive
models

This approach simultaneously addresses two issues:

1 imposing constraints on the shape through a re-parameterization
of the model

2 defining the optimal smoothness of the curve via additive models
with penalized splines
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Re-parameterization as an unconstrained model

In the case of monotonically increasing shapes, the constraints are
enforced by setting γk − γk−1 > 0 for k = 2, . . . ,m

This can also be obtained by re-parameterizing the B-splines with
unconstrained coefficients φ as:

γ1 = φ1 , γk = φ1 +
k∑

j=2

eφj , k = 2, . . . ,m
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Matrix formulation

Setting γ = Pφ̃, with φ̃ = [φ1, e
φ2 , . . . , eφm ]T , and:

P =

1 0 0 · · · 0
1 1 0 · · · 0

.
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.

.

.

.

.

.
. . .

.

.

.
1 1 1 · · · 1


the regression model can written in terms of unconstrained working
parameters as:

f (x ;φ) = XPφ̃

Fitted through non-linear unconstrained optimization
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Shape constrained penalized splines

The optimal smootheness of the relationship can be found by
penalizing differences between adjacent coefficients (Wood 2006)

The least square objective can be modified to:

||y − XPφ̃||2 + λφTSφ

where S = DT
2 D2 is a known penalty matrix (with D2 previously

defined), and λ is a smoothing parameter
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Maximizing the log-likelihood

Lp(φ, λ) =L(φ)− 1

2
λφTSφ

J(φ) =
∂Lp

∂φ

H(φ) =
∂2Lp

∂φ2

Starting from an initial estimate φ(0), solve iteratively using the
Newton-Raphson method, with:

φ(i+1) = φ(i) − H(φ(i))−1J(φ(i))

This method is integrated with smoothing parameter (λ) selection
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Discussion

Interesting method with several potential applications

(Relatively) complex estimation and computational techniques

Comparison of linear constrained and non-linear unconstrained
optimization

Shape constrained additive models fully implemented in the R
package scam
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Extensions

Framework already extended to bi-dimensional risk surfaces through a
tensor product basis functions

Not easy to address the original problem that motivated the research:
shape-constrained exposure-lag-response functions
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