Time series analysis: from econometrics to epidemiology

Antonio Gasparrini

London School of Hygiene and Tropical Medicine

29 September 2010

Time series: definition

A time series is defined as a collection of observations sampled at equally-spaced and ordered time points

Statistically, the series is treated as a sequence of n random variables $Y_{1}, \ldots, Y_{t}, \ldots, Y_{n}$, assumed to be a single realization of a discrete-time stochastic process $\left\{Y_{t}\right\}$

ARIMA models

Many probabilistic models are based on the assumption of (weakly) stationarity of the series:

- Constant $\mu=\mathrm{E}(Y)$
- $\operatorname{Cov}\left(Y_{t}, Y_{s}\right)=\gamma(h)$, with $h=|t-s|$

Series usually exhibit stochastic or deterministic trends
Stationarity may be recovered by auto-regressing, integrating, and averaging (filtering) the series \longrightarrow ARIMA models

Temporal decomposition

In epidemiological studies, the purpose of time series analysis is shifted from prediction to estimation

The series is decomposed into long-time and seasonal trends (or other components related to different timescales), and the contribution of additional terms

The series $\left\{Y_{t}\right\}$ is then described as the sum of deterministic signal plus a stochastic stationary noise

Temperature and mortality series

New York 1987-2000

Regression models

In modern applications, decomposition is performed through regression models

A general model to describe the series of observed outcomes y_{t}, with $t=1, \ldots, n$ is given by:

$$
g\left(y_{t}\right)=\alpha+\sum_{j=1}^{J} s_{j}\left(x_{t j} ; \boldsymbol{\beta}_{j}\right)+\epsilon_{t}
$$

Focus on the index t : temporal structure of the association

Methodological research topics

- Methods to describe the temporal structure of the association (delayed effects)
- Smoothing techniques for control of seasonality
- Methods to incorporate residual correlation
- Interrupted time series: before-after design

Delayed effects

Time (Lags)

Distributed lag (non-linear) models

A statistical framework to describe simultaneously non-linear and delayed effects in time series data

DLNMs are expressed by the definition of a cross-basis:
bi-dimensional function describing the relationship along the spaces of predictor and lag

This framework is implemented in the R package dlnm

Temperature and mortality (I)
 Chicago 1987-2000

Temperature and mortality (II)

Chicago 1987-2000

Temperature $=-10$

