A multilevel excess hazard model to estimate net survival on hierarchical data allowing for non-linear and non-proportional effects of covariates

Aurélien Belot

Cancer survival group, Non-Communicable Disease Epidemiology, Epidemiology and Population Health, London School of Hygiene and Tropical Medicine

Collaborative work with:

- Hadrien Charvat (National Cancer Center, Tokyo, Japan),
- Laurent Remontet, Nadine Bossard, Laurent Roche (Service de Biostatistique, Lyon, France),
- Olivier Dejardin, Guy Launoy (U1086 INSERM, Cancers and Preventions, Caen, France),
- Bernard Rachet (Cancer Survival Group, LSHTM)
- Fundings: ANR (MESURE/CENSUR Working Survival Group

ANR-09-BLAN-0357/ANR-12-BSV1-0028) and IRESP (AAR2013-13)

18/07/2016

Outline

- Context
- Objective
- 2 Method: Time-to-event analysis using hazard-based regression models
 - Excess hazard regression model
 - Shared frailty model
 - Mixed-effect excess hazard regression model
 - Likelihood function and estimation procedure

3 Simulation study

4 Illustration

5 R Package mexhaz

• No cause of death information

- No cause of death information
- Socio-economic level of patients assessed by an ecological measure (area of residence)

- No cause of death information
- Socio-economic level of patients assessed by an ecological measure (area of residence)
- Hierarchical structure of the data
 - Level 1: individual's time-to-event
 - Level 2: cluster (area of residence, hospital, ...)

- No cause of death information
- Socio-economic level of patients assessed by an ecological measure (area of residence)
- Hierarchical structure of the data
 - Level 1: individual's time-to-event
 - Level 2: cluster (area of residence, hospital, ...)

 \Rightarrow Assumption of independence between individual's survival times is violated for individuals living in the same area (same level of deprivation, but also local medical practice, environmental factor...) \Rightarrow Correct statistical inference requires that the hierarchical structure of the data be taken into account.

- Cancer-specific hazard without the cause of death?
 ⇒ excess hazard regression models
- Correlated data / hierarchical structure?

 \Rightarrow mixed effect models (multilevel models) provide a satisfying and convenient theoretical framework by introducing a random effect at the cluster level.

Mixed effect models have been well developed in the context of overall survival

But lack of tools/development in the context of net survival/excess hazard regression models

• To propose an approach to fit an **excess** hazard regression model with a random effect, allowing for non linear and time-dependent effects of covariates

- To propose an approach to fit an **excess** hazard regression model with a random effect, allowing for non linear and time-dependent effects of covariates
- To evaluate the performances of the proposed approach in an extensive simulation study

- To propose an approach to fit an **excess** hazard regression model with a random effect, allowing for non linear and time-dependent effects of covariates
- To evaluate the performances of the proposed approach in an extensive simulation study
- To make available the approach in an user-friendly software (R-package)

Classical method used to analyse population-based cancer registry data

The overall mortality hazard λ is split into an excess mortality hazard (due to cancer) λ_E and an expected (or population) mortality hazard λ_P [Estève 1990]:

$$\lambda(t, \mathbf{x}, \mathbf{z}) = \lambda_E(t, \mathbf{x}) + \lambda_P(\mathbf{a} + t, \mathbf{z})$$

Where

- Covariates x: age at diagnosis *a*, deprivation, stage at diagnosis, sex, year of diagnosis, ...
- Variables defining the population mortality hazard in the life-table: age *a* + *t* and **z** (sex, year, region, deprivation, ...)

$$\lambda(t, \mathbf{x}, \mathbf{z}) = \lambda_E(t, \mathbf{x}) + \lambda_P(a + t, \mathbf{z})$$

- The quantity λ_P is considered known
- The quantity to estimate is λ_E

Many different models have been proposed: more flexible and allowing time-dependent effects using splines [Bolard 2002, Giorgi 2003, Nelson 2007, Remontet 2007, Pohar-Perme 2009, ...]

But nothing has been done to fit an for excess hazard model on correlated data, without losing flexibility (parametric hazard, or piecewise step function [Dupont 2013])

The classical shared frailty hazard-based regression model

In survival analysis, random effect is usually called "frailty" The frailty, *u*, can be viewed as a random variable that acts multiplicatively on the baseline hazard [Duchateau 2008, Wienke 2011].

$$\lambda(t; \mathbf{x}_{ij}, u_i) = \lambda_0(t) u_i \exp({}^t \mathbf{x}_{ij} \boldsymbol{\beta})$$

Each geographical unit *i* has a frailty value $u_i [= exp(w_i)]$ which is shared by all individuals *j* observed in unit *i* In survival analysis, random effect is usually called "frailty" The frailty, *u*, can be viewed as a random variable that acts multiplicatively on the baseline hazard [Duchateau 2008, Wienke 2011].

$$\lambda(t; \mathbf{x}_{ij}, u_i) = \lambda_0(t) u_i \exp({}^t \mathbf{x}_{ij} \boldsymbol{\beta})$$

Each geographical unit *i* has a frailty value $u_i [= exp(w_i)]$ which is shared by all individuals *j* observed in unit *i*

Usual assumptions:

- Parametric distribution for T (Weibull, piecewise constant,...)
- Gamma distribution for the frailty u

Mainly due to practical reasons (analytical expression of the marginal likelihood)

 \Rightarrow No tool for flexible excess hazard

The flexible model proposed

$$\lambda_{E}(t, \mathbf{x}_{ij}) = \lambda_{0}(t; \boldsymbol{\xi}) \cdot \exp(\beta_{1}x_{1} + f(x_{2}; \boldsymbol{\beta}_{2}) + g(t; \boldsymbol{\beta}_{3})x_{3} + w_{i})$$

Where

- λ₀ is the baseline hazard modelled with (exp of) B-splines (or piecewise or Weibull),
- β_1 the linear and proportional (fixed) effect of x_1 ,
- f and g are flexible functions (B-splines) allowing for non-linear and non-proportional effects for x_2 and x_3 (defined with β_2 and β_3), respectively,
- w_i is the random effect of cluster *i*, assumed to follow a normal distribution with mean 0 and standard deviation σ

- **①** Likelihood of one observation j in cluster i
- Conditional Likelihood for cluster i
- Marginal Log-Likelihood for cluster
- Total Log-likelihood

- Likelihood of one observation j in cluster i
- Conditional Likelihood for cluster i
- Marginal Log-Likelihood for cluster
- Total Log-likelihood

Conditional Likelihood for cluster i

For one observation *j* in cluster *i*: $\{t_{ij}, \delta_{ij}, \mathbf{x}_{ij}\}$

$$L_{ij}^{\mathcal{C}}(\boldsymbol{\beta}|\boldsymbol{w}_i) = \exp\left\{-\Lambda_{\mathcal{E}}(t_{ij}, \mathbf{x}_{ij}, \boldsymbol{w}_i) - \Lambda_{\mathcal{P}}(\boldsymbol{a}_{ij} + t_{ij}, \mathbf{z}_{ij})\right\} \left\{\lambda_{\mathcal{E}}(t_{ij}, \mathbf{x}_{ij}, \boldsymbol{w}_i) + \lambda_{\mathcal{P}}(t_{ij}, \mathbf{z}_{ij})\right\}^{\delta_{ij}}$$

- Gauss-Legendre quadrature to approximate the cumulative excess hazard $\Lambda_E(t_{ij}, \mathbf{x}_{ij}, w_i) = \int_0^t \lambda(u, \mathbf{x}_{ij}, w_i) \, \mathrm{d}u$
- Last term of the exponential can be omitted (does not depend on the βs)

For cluster *i*:

$$\mathrm{L}_{i}^{\mathcal{C}}(\boldsymbol{\beta}|w_{i}) = \prod_{j=1}^{n_{i}} \left\{ \mathrm{L}_{ij}^{\mathcal{C}}(\boldsymbol{\beta}|w_{i}) \right\}$$

Aurélien Belot (LSHTM)

Mixed effect excess hazard model

- **①** Likelihood of one observation j in cluster i
- Conditional Likelihood for cluster i
- Marginal Log-Likelihood for cluster
- Total Log-likelihood

We assume a normal distribution for the random effect, with mean=0 and variance= σ^2 , $\phi(w, 0, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{w^2}{2\sigma^2}\right\}$

For cluster *i*

$$\mathbf{L}_{i}^{M}(\boldsymbol{\beta},\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} \mathbf{L}_{i}^{C}(\boldsymbol{\beta}|\boldsymbol{w}) \exp\left\{-\frac{\boldsymbol{w}^{2}}{2\sigma^{2}}\right\} \mathrm{d}\boldsymbol{w}$$

- Problem : How to evaluate this likelihood ?
- A solution is to use the Gauss-Hermite Quadrature (GHQ)

$GAUSS\text{-}HERMITE \ Quadrature$

$$\int_{-\infty}^{\infty} f(\mathbf{v}) \exp\{-\mathbf{v}^2\} \, \mathrm{d}\mathbf{v} \approx \sum_{k=1}^{Q} \rho_k^H \cdot f(x_k^H)$$

- Nodes $= x_k^H$
- Weights = ρ_k^H

The nodes and weights depend only on Q (not on the integrand f...)

< ∃ >

Illustration of the GHQ

Tuerlinckx F et al., British Journal of Mathematical and Statistical Psychology, 2006 2006 Aurélien Belot (LSHTM) Mixed effect excess hazard model 18/07/2016 16 / 45 Basic idea:

- The quadrature locations are rescaled and translated so that they cover the region where the integrand varies most, i.e. around its mode
- To transform the integrand to obtain a new quadrature formula in which the new nodes and the corresponding weights depend on the integrand (and so on the cluster *i*)

LAPLACE approximation

Let g be a strictly positive, unimodal function with mode μ_g and let us define l such that $l(x) = \log\{g(x)\}$.

In a neighbourhood of μ_g : $l(x) \approx l(\mu_g) + (x - \mu_g)l'(\mu_g) + \frac{(x - \mu_g)^2}{2}l''(\mu_g)$

•
$$\mu_g$$
 extremum $\Rightarrow l'(\mu_g) = 0$
• μ_g maximum $\Rightarrow l''(\mu_g) < 0$

$$g(x) \approx g(\mu_g) \underbrace{\exp\left\{\frac{(x-\mu_g)^2}{2}I''(\mu_g)\right\}}_{\propto \phi(x,\mu_g,\sigma_g)} \quad \text{with} \quad \sigma_g = \frac{1}{\sqrt{-I''(\mu_g)}}$$

The adaptive GHQ 1/2

Define and use $\operatorname{LaplaCE}$ approximation on :

$$g_i(w,\beta,\sigma) = \mathcal{L}_i^{\mathcal{C}}(\beta|w)\phi(w,0,\sigma) \quad \Rightarrow \quad \left\{ \begin{array}{c} \mu_i \\ \sigma_i \end{array} \right.$$

/

We have :

$$\mathbf{L}_{i}^{M}(\boldsymbol{\xi},\boldsymbol{\beta},\sigma) = \int_{-\infty}^{\infty} \underbrace{\frac{g_{i}(w,\boldsymbol{\beta},\sigma)}{\phi(w,\mu_{i},\sigma_{i})}}_{f_{i}^{\mathrm{A}}(w,\boldsymbol{\beta},\sigma)} \phi(w,\mu_{i},\sigma_{i}) \, \mathrm{d}w$$

Using the GHQ, we approximate :

$$\mathbf{L}_{i}^{M}(\boldsymbol{\xi},\boldsymbol{\beta},\sigma) \approx \sum_{k=1}^{Q} \rho_{k}^{N}(\mu_{i},\sigma_{i}) \cdot f_{i}^{\mathrm{A}}(\boldsymbol{x}_{k}^{N}(\mu_{i},\sigma_{i}),\boldsymbol{\beta},\sigma)$$

The modified nodes and weights are given (as functions of the original ones) by:

$$\begin{cases} x_k^N(\mu_i, \sigma_i) = \mu_i + \sigma_i \sqrt{2} \cdot x_k^H \\ \rho_k^N(\mu_i, \sigma_i) = \rho_k^H \cdot \sigma_i \sqrt{2} \exp\{x_k^{H^2}\} \end{cases}$$

Illustration of the Adaptive GHQ

More accurate approximation than GHQ and it needs less quadrature points Tuerlinckx F et al., British Journal of Mathematical and Statistical Psychology, 2006

Aurélien Belot (LSHTM)

Mixed effect excess hazard model

18/07/2016 21 / 45

- **①** Likelihood of one observation j in cluster i
- Conditional Likelihood for cluster i
- Marginal Log-Likelihood for cluster
- Total Log-likelihood

Log-likelihood for cluster *i*

$$\ell_i^{\mathcal{M}}(\boldsymbol{\beta}, \sigma) \approx \log \left\{ \sum_{k=1}^{Q} \rho_k^{\mathcal{N}}(\mu_i, \sigma_i) \cdot f_i^{\mathcal{A}}(\boldsymbol{x}_k^{\mathcal{N}}(\mu_i, \sigma_i), \boldsymbol{\beta}) \right\}$$

Total Log-likelihood

$$\ell(\boldsymbol{eta},\sigma) \approx \sum_{i=1}^D \ell^M_i(\boldsymbol{eta},\sigma)$$

To estimate the parameters $(\hat{\beta}, \hat{\sigma})$, use a standard optimisation routine (such as the Newton-Raphson algorithm) on the quantity $\ell(\beta, \sigma)$

Aim: to evaluate the performances of the proposed approach in different scenarios, in terms of its ability to estimate

- the baseline excess hazard
- the fixed effects of covariates defined **both** at the individual level and at the cluster level (including time-dependent effect)
- the variance of the random effect

In scenarios A and B, the **impact of the design** (number of clusters and number of patients by cluster) and the **level of the variance** of the random effect were studied

- scenario A: Balance-Design: N patients by cluster is fixed
- scenario B: UnBalance-Design: N patients by cluster is variable

In scenario C, we studied the ability of our approach to model **non proportional effect** ((NPH)) of covariates (with unbalanced design)

In scenario D, we checked the robustness of our approach in case of **miss-specified distribution of the random effect** (with unbalanced design)

Design of the 1000 simulated dataset, with 1000 patients in each

- Age (25% [30, 65], 35% [65, 75], 40% [75, 85], with an uniform law in each age-class)
- Sex (Binomial distribution with P(sex=man)=0.5
- Cluster (the cluster ID (D = 10, 20, 50, 100))
- Deprivation Index (DI) defined at the cluster level (Normal(0,sd=1.5))

In scenarios A, Balance-Design: the number of patients by cluster is **exactly** equal to 10, 20, 50 or 100

In scenarios B, UnBalance-Design: the number of patients by cluster is **variable and equal, on average**, to 10, 20, 50 or 100 (one additional simulated condition with 800 clusters and 10 patients on average).

Simulation study (II)

• To simulate the time to death due to cancer T_1

 $\lambda_{E}(t, \operatorname{Age}_{ij}, \operatorname{Sex}_{ij}, \operatorname{DI}_{i}) = \lambda_{0}(t) \exp\{\beta_{\operatorname{Age}} \operatorname{Age}_{ij} + \beta_{\operatorname{Sex}} \operatorname{Sex}_{ij} + \beta_{\operatorname{DI}} \operatorname{DI}_{i} + w_{i}\}$

- Weibull baseline hazard $\lambda_0(t) = \lambda \rho t^{\rho-1}$ ($\lambda = 0.25$; $\rho = 0.7$)
- Age effect ($\beta_{Age} = 0.05$ for 1 year increase)
- Sex effect ($\beta_{\mathrm{Sex}}=$ 1, Men vs. women)
- DI effect ($\beta_{\rm DI} = 0.02$ for 1 unit increase)
- Random effect w_i : Normal distribution with mean 0 and standard deviation $\sigma = 0.25$ or 0.5 or 1

Simulation study (II)

• To simulate the time to death due to cancer T_1

 $\lambda_{E}(t, \operatorname{Age}_{ij}, \operatorname{Sex}_{ij}, \operatorname{DI}_{i}) = \lambda_{0}(t) \exp\{\beta_{\operatorname{Age}} \operatorname{Age}_{ij} + \beta_{\operatorname{Sex}} \operatorname{Sex}_{ij} + \beta_{\operatorname{DI}} \operatorname{DI}_{i} + w_{i}\}$

- Weibull baseline hazard $\lambda_0(t) = \lambda \rho t^{\rho-1}$ ($\lambda = 0.25$; $\rho = 0.7$)
- Age effect ($eta_{\mathrm{Age}}=$ 0.05 for 1 year increase)
- Sex effect ($eta_{\mathrm{Sex}}=$ 1, Men vs. women)
- DI effect ($\beta_{\rm DI} = 0.02$ for 1 unit increase)
- Random effect w_i : Normal distribution with mean 0 and standard deviation $\sigma = 0.25$ or 0.5 or 1
- To simulate the time to death due to other causes T_2 : yearly piecewise exponential law using mortality rates from the population lifetable
- \Rightarrow Final time $T = \min(T_1, T_2)$, with the corresponding vital status δ

- 4 同 6 4 日 6 4 日 6

For the scenario **NPH**, two different Weibull baseline hazards for men and women:

- Times to cancer-death in men = Weibull (shape=0.7, scale=0.25)
- Times to cancer-death in women = Weibull (shape=0.8, scale=0.18).

 \Rightarrow the Hazard Ratio between Men vs. Women is time-dependent

For the scenario Robustness The random effect was drawn from a normal distribution with $\sigma = 0.5$ but

- with mean=-1 for the first half of the clusters, and
- with mean=1 for the other half

 \Rightarrow standard deviation of the resulting distribution is $\sqrt(1.25) \approx 1.12$.

Simulation study (IV)

The model used to analyse the data

• in scenarios balance- and unbalance- Design and Robustness $\lambda_E(t, \operatorname{Age}_{ij}, \operatorname{Sex}_{ij}, \operatorname{DI}_i) = \lambda_0(t) \exp\{\beta_{\operatorname{Age}} \operatorname{Age}_{ij} + \beta_{\operatorname{Sex}} \operatorname{Sex}_{ij} + \beta_{\operatorname{DI}} \operatorname{DI}_i + w_i\}$

With $\lambda_0(t)$ modelled either as a Weibull or using a cubic B-spline (1 knot at 1 year)

• in scenarios NPH

 $\lambda_{\mathcal{E}}(t, \operatorname{Age}_{ij}, \operatorname{Sex}_{ij}, \operatorname{DI}_{i}) = \lambda_{0}(t) \exp\{\beta_{\operatorname{Age}} \operatorname{Age}_{ij} + \beta_{\operatorname{Sex}}(t) \operatorname{Sex}_{ij} + \beta_{\operatorname{DI}} \operatorname{DI}_{i} + w_{i}\}$

With $\lambda_0(t)$ and $\beta_{\text{Sex}}(t)$ modelled using a cubic B-spline (1 knot at 1 year)

Scenarios balance-Design, unbalance-Design and NPH

- Fixed-effect estimates of individual-level covariates unbiased and CP $\approx 95\%$ whatever number and size of clusters, the level of heterogeneity simulated and the level of unbalance
- Same performances with B-spline instead of Weibull for the baseline hazard
- With small number of clusters (10 or 20), bias and CP less than 95% for cluster-level covariate (β_{DI}) and std.dev (σ) of the random effect
- RMSEs for β_{DI} and $\sigma\searrow$ when the number of clusters \nearrow
- Time-dependent effects correctly estimated

Scenario Robustness

- $\bullet\,$ Fixed effect estimates of individual-level covariates unbiased and CP $\approx\,95\%$
- Bias and bad CP for cluster-level covariate
- Bad CP for σ

Simulation results

What about neglecting the hierarchical structure of the data ?

Simulation	mulation Parameters Weib		Weibull mi	mixed			Weibull fixed		
condition	(True value)	Bias	Percentage	CPa	RMSE ^b	Bias	Percentage	CP ^a	RMSE ^b
			Bias				Bias		
	λ (0.25)	0.0019	0.8	90.2	0.045	0.0209	8.4	53.8	0.051
Number of	ρ (0.7)	-0.0014	-0.2	93.8	0.023	-0.0454	-6.5	45.9	0.054
clusters: 10	β_{age} (0.05)	-0.0002	-0.5	93.8	0.004	-0.0038	-7.6	76.5	0.005
Cluster	β_{sex} (1)	0.0053	0.5	93.9	0.085	-0.074	-7.4	82.2	0.119
size: 100	β_{DI} (0.02)	0.0095	47.6	88.1	0.157	0.0072	36.2	40.2	0.147
	σ (0.5)	-0.0673	-13.5	78	0.146	NA	NA	NA	NA
	λ (0.25)	-0.0005	-0.2	92.9	0.033	0.0212	8.5	63	0.04
Number of	ρ (0.7)	-0.0004	-0.1	94.8	0.022	-0.0506	-7.2	33.3	0.056
clusters: 20	β_{age} (0.05)	0	0	94.7	0.004	-0.0042	-8.4	73.9	0.006
Cluster	β_{sex} (1)	0.0073	0.7	95.7	0.082	-0.0825	-8.2	80.7	0.119
size: 50	β_{DI} (0.02)	-0.0033	-16.4	92.5	0.08	-0.0063	-31.4	52.4	0.074
	σ (0.5)	-0.0311	-6.2	87.7	0.096	NA	NA	NA	NA
	λ (0.25)	-0.0021	-0.8	93.2	0.026	0.021	8.4	72.3	0.034
Number of	ρ (0.7)	-0.0011	-0.2	95.5	0.023	-0.0537	-7.7	29.3	0.058
clusters: 50	β_{age} (0.05)	-0.0002	-0.3	95.6	0.004	-0.0044	-8.9	73.2	0.006
C1	β_{sex} (1)	0.012	1.2	95.1	0.085	-0.0845	-8.5	81.3	0.12
ciuster	β_{DI} (0.02)	0.0007	3.6	94.7	0.069	-0.0008	-4.2	70	0.063
SIZC. 20	σ (0.5)	-0.013	-2.6	92.6	0.073	NA	NA	NA	NA
	λ (0.25)	-0.0018	-0.7	94.7	0.022	0.0218	8.7	77.1	0.031
Number of	ρ (0.7)	-0.0005	-0.1	96.1	0.023	-0.0547	-7.8	25.6	0.058
clusters: 100	β _{age} (0.05)	0.0001	0.2	94.8	0.004	-0.0043	-8.7	73.7	0.005
Cluster	β_{sex} (1)	0.008	0.8	95.1	0.086	-0.0896	-9	78.9	0.122
size: 10	β_{DI} (0.02)	-0.0033	-16.5	94.3	0.045	-0.0049	-24.5	80.3	0.041
	σ (0.5)	-0.0038	-0.8	95.3	0.064	NA	NA	NA	NA

Aurélien Belot (LSHTM)

Based on data from two population-based cancer registries in France (Calvados and Manche)

- Oral cavity cancer patients, diagnosed between 1997 and 2004 in a French region and followed up to 31/12/2007
- European Deprivation Index, EDI [Pornet JECH, 2012], defined at the residential area level, the IRIS (Ilots Regroupés pour des Indicateurs Statistiques)

 \Leftrightarrow considered as a proxy for the patients socio-economic status (continuous variable)

Objective: effect of the EDI on the excess mortality hazard

- We analysed 2461 cancer patients
- Patients alive at 5 years were censored
- Distribution of patients per cluster (IRIS): 329 IRIS with 1 patient, 337 IRIS with 2-5 patients, 100 IRIS with 6-10 patients, 31 IRIS with more than 10 patients (max=21)
- EDI : from -3.45 for the most affluent to 8.98 for the most deprived

Multilevel excess mortality hazard models including

- covariates age, sex, year of diagnosis and the EDI
- a random effect defined at the cluster level (normal distribution with mean 0 and standard deviation σ)
- Non-linear and/or time-dependent effects of age and EDI (quadratic B-splines)

 \Rightarrow Five models were fitted, the final one was chosen using the Akaike Information Criterion

Parameters estimated from the five models

		Parameter estimates (Standard Errors)			
	Model 1 (AIC = 7754.048)	Model 2 (AIC = 7754.473)	Model 3 (AIC = 7715.413)	Model 4 (AIC = 7709.038)	Model 5 (AIC = 7712.898)
Covariates					
Sex (ref=women)	0.37 (0.075)	0.36 (0.076)	0.35 (0.076)	0.34 (0.076)	0.34 (0.076)
Year of diagnosis	0.09 (0.011)	0.09 (0.011)	0.08 (0.011)	0.09 (0.011)	0.09 (0.011)
Age at diagnosis	0.01 (0.002)	NLIN	NLIN-NPH	NLIN-NPH	NLIN-NPH
EDI	0.04 (0.013)	0.04 (0.013)	0.04 (0.013)	NLIN	NLIN-NPH
Standard deviation σ	0.09 (0.108)	0.11 (0.097)	0.10 (0.099)	0.06 (0.15)	0.07 (0.143)

< ∃ >

- to fit flexible hazard regression model
 - with/without introducing λ_P (i.e. to estimate overall or excess hazard)
 - with different baseline hazards: piecewise step function, Weibull or B-splines
 - with non-linear and/or time-dependent effect(s) of covariate(s)
 - with/without a random effect defined at the cluster level

- to fit flexible hazard regression model
 - with/without introducing λ_P (i.e. to estimate overall or excess hazard)
 - with different baseline hazards: piecewise step function, Weibull or B-splines
 - with non-linear and/or time-dependent effect(s) of covariate(s)
 - with/without a random effect defined at the cluster level
- to predict hazard and the corresponding survival
 - at several time points for one vector of covariates
 - for several vectors of covariates at one time point

- to fit flexible hazard regression model
 - with/without introducing λ_P (i.e. to estimate overall or excess hazard)
 - with different baseline hazards: piecewise step function, Weibull or B-splines
 - with non-linear and/or time-dependent effect(s) of covariate(s)
 - with/without a random effect defined at the cluster level
- to predict hazard and the corresponding survival
 - at several time points for one vector of covariates
 - for several vectors of covariates at one time point
- to plot the hazard and the corresponding survival

- to fit flexible hazard regression model
 - with/without introducing λ_P (i.e. to estimate overall or excess hazard)
 - with different baseline hazards: piecewise step function, Weibull or B-splines
 - with non-linear and/or time-dependent effect(s) of covariate(s)
 - with/without a random effect defined at the cluster level
- to predict hazard and the corresponding survival
 - at several time points for one vector of covariates
 - for several vectors of covariates at one time point
- to plot the hazard and the corresponding survival

Estimation

Mod1 <- mexhaz(formula=Surv(time=timesurv, event=vstat)~
agecr+depindex+IsexH+nph(agecr), data=simdatn1,
base="exp.bs", degree=3, knots=c(1,5), expected="popmrate",
random="clust")</pre>

Estimation

Mod1 <- mexhaz(formula=Surv(time=timesurv, event=vstat)~
agecr+depindex+IsexH+nph(agecr), data=simdatn1,
base="exp.bs", degree=3, knots=c(1,5), expected="popmrate",
random="clust")</pre>

• Prediction at several time points for one vector of covariates

```
Pred_Mod1 <- predMexhaz(Mod1, time.pts=seq(0.1,10,by=0.1),
data.val=data.frame(agecr=0,depindex=0.5,IsexH=1),
conf.int="delta")
```

Estimation

Mod1 <- mexhaz(formula=Surv(time=timesurv, event=vstat)~
agecr+depindex+IsexH+nph(agecr), data=simdatn1,
base="exp.bs", degree=3, knots=c(1,5), expected="popmrate",
random="clust")</pre>

• Prediction at several time points for one vector of covariates

```
Pred_Mod1 <- predMexhaz(Mod1, time.pts=seq(0.1,10,by=0.1),
data.val=data.frame(agecr=0,depindex=0.5,IsexH=1),
conf.int="delta")
```

Plot

plot(Pred_Mod1, which="hazard")

We proposed an approach to fit a flexible excess hazard model, allowing for a random effect defined at the cluster level and time-dependent and/or non-linear effects of covariates

- Numerical integration techniques:
 - Adaptive Gauss-Hermite Quadrature to calculate the cluster-specific marginal likelihood
 - Gauss-Legendre quadrature for the cumulative hazard
- Flexible functions (B-splines) used for the baseline and the time-dependent effects
- Good performances shown by simulation
- R-package available on the CRAN website

- Application for 18 cancers on French data and English Data
- Extension to more than one random effect
- Use of this model to distinguish individual deprivation from contextual effect
- Extension to crossed and nested random effects

Population-based Time-to-event Analysis International conference

http://csg.lshtm.ac.uk/pta2016 31 August-2 September 2016

International Conference, London, 2016

Population-based Time-to-event Analyses (PTA)

The conference, co-organised by the Cancer Survival Group and the Centre for Statistical Methodology at the London School of Hygiene and Tropical Medicine (LSHTM), will take place from Wednesday 31st of August to Friday 2st September 2016.

Venue

The meeting will be held at the <u>London School of Hygiene and Tropical Medicine</u>, in the School's Manson Lecture Theatre, which is in the main building on Keppel Street.

Themes of the conference

The conference will focus on three main areas of time-to-event analyses, all of which concentrate on population-based data and translational epidemiology:

- 1. Recent methodological developments in competing risks and net survival
- 2. Hierarchical and correlated data in survival and longitudinal analysis
- 3. Causal inference in longitudinal settings with time-dependent confounding

The conference will include invited speakers as well as oral or poster communications. At the end of the conference, a **panel** will summarise the main important methods and discussions highlighted during these three days and, will point to the **future in methodological developments** regarding advanced time-to-event

Aurélien Belot (LSHTM)

Any questions?

I have one

- Would you be able to explain (intuitively) the main difference between Gauss-Hermite quadrature and the Adaptive Gauss-Hermite quadrature?
- And how the Adaptive Gauss-Hermite quadrature works?

References

Charvat H, Remontet L, Bossard N, Roche L, Dejardin O, Rachet B, Launoy G, Belot A; and the CENSUR working survival group.

A multilevel excess hazard model to estimate net survival on hierarchical data allowing for non-linear and non-proportional effects of covariates

Stat Med.2016; DOI 10.1002/sim.6881

Pornet C, Delpierre C, Dejardin O, Grosclaude P, Launay L, Guittet L, Lang T, Launoy G.

Construction of an adaptable European transnational ecological deprivation index: the French version

J Epidemiol Community Health.2012:66:982-9.

Estève J, Benhamou E, Croasdale M, Raymond L.

Relative survival and the estimation of net survival elements for further discussion Stat Med. 1990: 9:529-38.

Dupont C, Bossard N, Remontet L, Belot A.

Description of an approach based on maximum likelihood to adjust an excess hazard model with a random effect

Cancer Epidemiol.2013:37:449-56

イロト イヨト イヨト イヨト

References

Bolard P, Quantin C, Abrahamowicz M, Esteve J, Giorgi R, Chadha-Boreham H, Binquet C, Faivre J.

Assessing time-by-covariate interactions in relative survival models using restrictive cubic spline functions

J Cancer Epidemiol Prev.2002;7:11322.

Giorgi R, Abrahamowicz M, Quantin C, Bolard P, Esteve J, Gouvernet J, Faivre J. A relative survival regression model using B-spline functions to model non-proportional hazards

Stat Med.2003;22:276784.

An overall strategy based on regression models to estimate relative survival and model the effects of prognostic factors in cancer survival studies *Stat Med*.2007;26:2214-28.

Nelson CP, Lambert PC, Squire IB, Jones DR.

Flexible parametric models for relative survival, with application in coronary heart disease *Stat Med*.2007;26:5486-98.

Pohar-Perme M, Henderson R, Stare J.

An approach to estimation in relative survival regression

Biostat.2009;10:136-46.

References

	- 5	ς.
	-	

Tuerlinckx F, Rijmen F, Verbeke G, De Boeck P. Statistical inference in generalized linear mixed models: a review *Br J Math Stat Psychol*.2006;59:225-55.

Liu Q, Pierce DA. A note on Gauss-Hermite quadrature *Biometrika*.1994;81:624-9.

Pinheiro JC, Bates DM. Approximations to the log-likelihood function in the non-linear mixed-effects model *J Comput Graph Stat*.1995;4:12-35.

Duchateau L, Janssen P. The frailty model *Springer*,2008.

Wienke A. Frailty Models in Survival Analysis Chapman and Hall/CRC,2010.