

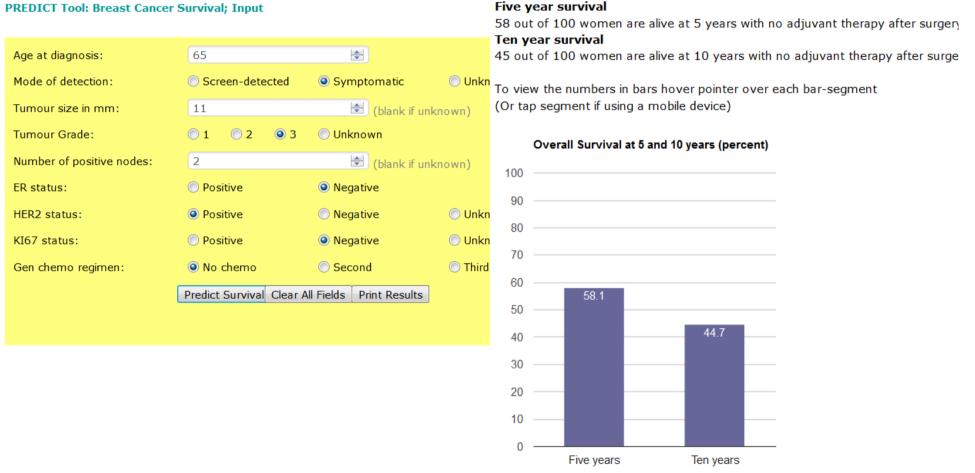
Credibility of risk predictions in medical research: concepts, tools, and applications


Babak Oskooei

London Hub for Trials Methodology Research MRC Clinical Trials Unit at UCL 27 November 2015

- 1. Introduction why risk prediction is important
- 2. Risk prediction models
- 3. Concepts underlying the assessment of risk predictions
 - a. Discrimination
 - b. Calibration
 - c. Predictive ability
- 4. Performance of a survival risk prediction model
 - a. In validation setting: transportability & reproducibility
 - b. A new measure of predictive ability: total gain (TG) statistics
- 5. Some real examples
- 6. Conclusions

- It is used in clinical management of patients
 - Selection for surgery
 - Selection for screening/diagnostic tests
 - Determining prognosis
- It can be used to assess the importance/significance of available prognostic factors as well as the new biomarkers
- We use them in the design of clinical trials
 - E.g. RAMPART trial



Clinical management of patients

Example I: breast cancer

- Online web-tool PREDICT<u>www.predict.nhs.uk</u> :
 - to select the most appropriate adjuvant therapy following surgery

PREDICT Tool: Breast Cancer Survival; Results

PREDICT Tool: Breast Cancer Survival; Input

LSHTM seminars – 27 November 2015

Clinical management of patients

Example II: American college of surgeons surgical risk calculator - http://riskcalculator.facs.org/

MRC Hubs for Trials Methodology Research

Risk Calculator F	lomepage About I	FAQ ACS Website ACS NS	QIP Website	
		Surgical Information		
Procedure	14140 - Colectomy, partial; with anast	tomosis	Clear	
		may also search using two words (or two partial v "cholecystectomy+cholangiography"	words) by	
	Reset All	Selections		
**	200			4.1
		ation as you can to receive the best risk estimates. you cannot provide all of the information below.		
Age Gro	up 65-74 years 💌	Diabetes 🔞	None 💌	
	iex Male 💌	Hypertension requiring medication 🧿	Yes	
Functional stat		Previous cardiac event 🛞	No 🗶	
Emergency ca		Congestive heart failure in 30 days prior to (?)	No 💌	
ASA cla		surgery	NO ES	
Wound cia	~	Dyspnea 🛞	Mana	,
			None	1
Steroid use for chronic conditi		Current smoker within 1 year 🧐	Yes	
Ascites within 30 days prior to surge Systemic sepsis within 48 hours pri		History of severe COPD 😢	No 💌	
to surge	ery None 💽	Dialysis 🛞	No	
	0	Acute Renal Failure 🕑	No 💌	
Ventilator depende	and the second se	BMI Calculation: 🕐 Height (in)	69	
Disseminated cand	cer 🕐 No 💌	Weight (lbs)	250	

Clinical management of patients

Example II: American college of surgeons surgical risk calculator - http://riskcalculator.facs.org/

MRC Hubs for Trials Methodology Research

lisk Outcome		Age: 65-74, Male, Clean/Contaminated wound, HTN, Smoker, Obese (Class2)	Risk Factors
lisk Outcome			
1% Below Average	Contraction of the second s		Outcomes
	<1% Below Average		Death
1% Average	21% Average		Any Complication 🛞 📃
2% Below Average	2% Below Average		Pneumonia 📀 📗
1% Below Average	1% Below Average		Cardiac Complication 🛞
6% Above Average	16% Above Average	•	Surgical Site Infection 🛞 📕
2% Below Average	2% Below Average		Urinary Tract Infection 🛞 📗
2% Average	2% Average		Venous 📀 📋
1% Above Average	1% Above Average		Renal Failure 🕘 📗
.6% Below Average	16% Below Average		Serious Complication 🛞
		er) Average Length of Hospital Stay: 6 days	0% (Bett
tmast of Ricks	instment of Ricks		
stment of Risks	justment of Risks	over	How to Interpret the Graph Ab
2% Average 1% Above Average	2% Average 1% Above Average	Average Length of Hospital Stay: 6 days	Venous (2) (1) thromboembolism (2) (1) Renal Failure (2) (1) Serious Complication (2) (1) 0% (Bett

Clinical risk predictions: Example III: Cancer prognosis

MRC Hubs for Trials Methodology Research

MRC Clinical Trials Unit Hub

Name of the web-tool	Web address
Adjuvant Online	http://www.adjuvantonline.com/
AJCC—individualized melanoma patient outcome prediction tools	http://www.melanomaprognosis.org/
Artificial neural networks in prostate cancer	http://www.prostatecalculator.org/
Biochemical recurrence-free survival prediction model	http://eurology.surgery.duke.edu/Aspx/PredictionModel/NomogramsMo del.aspx
CancerMath	http://www.lifemath.net/cancer/
UCSF—capra Score	http://urology.ucsf.edu/patientGuides/uroOncPt Assess.html#capra
Cancer survival query system	http://www.csqs.cancer.gov/
DFS calculator for EBRT, brachytherapy and combinations of the two	http://www.prostate-cancer-radiotherapy.org.uk/calculator.htm
FinProg online	http://www.finprog.org/CM/CM2.asp?pi = 1
Nomograms for predictiong survival of GBM patients	http://www.eortc.be/tools/gbmcalculator/model1.aspx
The Han tables	http://urology.jhu.edu/prostate/hanTables.php
IBTR—breast cancer module version 2.0	http://160.109.101.132/ibtr/
Knight Cancer Institute—survival prediction tools	http://skynet.ohsu.edu/nomograms/
Lerner Research Institute—risk calculators	http://www.lerner.ccf.org/qhs/risk_calculator/
MAASTRO prediction website	http://www.predictcancer.org/
MD Anderson clinical calculators	http://www.mdanderson.org/education-and-research/resources-for- professionals/clinical-tools-and-resources/clinical-calculators/index.html
Memorial Sloan-Kettering—prediction tools	http://www.mskcc.org/cancer-care/prediction-tools
University of Montreal—nomograms	http://nomogram.org/
Mayo clinic adjuvant tool (numeracy)	http://www.mayoclinic.com/calcs/
Prognostigram	http://otooutcomes.wustl.edu/research/topics/cancer/Pages/Prognostig ram.aspx
QxMD—calculate	http://www.qxmd.com/apps/calculate-by-qxmd
Calculator for estimating overall life expectancy and lifetime risk for prostate cancer death in newly diagnosed men managed without definitive local therapy	e http://www.roswellpark.org/apps/prostate_cancer_estimator/

Ref: Rabin BA, Gaglio B, Sanders T, et al. (2013), Cancer Epidemiol. Biomarkers Prev., 1645–1656 DOI: 10.1158/1055-9965.EPI-13-0513

- Aim of a risk prediction model:
 - to assess the prognostic ability of risk factors or the model.
- Prognosis: prediction of the course or outcome of disease
 - The course is about the disease at the population level
 - The outcome is at the individual level
- A risk prediction model is:
 - A formal combination of multiple predictors
 - Converts predictor values to an estimate of risk
 - Other names: prognostic model; prognostic index (PI)/rule
- Developmental phases:
 - **1.** Design and model building i.e. sample size; selection bias
 - Statistical modeling: the two cultures Breiman L. (2001)
 - model assessment focus of this talk 2.
 - Clinical impact i.e. utility analysis 3.

Linear regression model:

- In linear model $Y = \beta X + \varepsilon$ where $\varepsilon \sim N(0, \sigma^2)$
 - Y : outcome, e.g. weight, X: covariates, e.g. age, sex, height
- The outcome is usually expressed in terms of:
 - Parameter estimates: $\hat{\beta}$
 - Confidence intervals (CI)
 - Model fits statistics, e.g. Chi-squared statistic
 - P-values it can be interpreted as "a measure of surprise"
- The P-value fallacy:
 - It only answers one question: "Does an observed difference exceed that which might reasonably be expected solely as a result of sampling error and/or random allocation of individuals?" (*Colquhoun - 2014, DOI:* 10.1098/rsos.140216)
- Classical statistics tells us how to allow for uncertainty in the data. But what about uncertainty in the model?
- None of these measures provide information about the worth of the model or about the credibility of model based predictions.

Linear regression model: Predictive ability

- In linear model $Y = \beta X + \varepsilon$ where $\varepsilon \sim N(0, \sigma^2)$
 - Y : outcome, e.g. weight, X: covariates, e.g. age, sex, height
- *R*² measures the amount of prognostic information (i.e. reduction in uncertainty):
- Uncertainty can be measured using: variance, likelihood, etc.

$$R^{2} = \frac{Var(Y) - E[Var(Y|X)]}{Var(Y)}$$
$$r^{2} = \frac{Var(\hat{\beta}x)}{Var(\hat{\beta}x) + \sigma_{\varepsilon}^{2}}$$

- R^2 properties: I) $R^2 \in [0,1]$; II) $\beta \uparrow : R^2 \uparrow$
- Variance of $\hat{\beta}x$ (PI) provides vital information.
- Some only consider $Var(\hat{\beta}x)$ or functions of it, Crager (2012) or D-statistic

Different Facets of a risk prediction model:

- Discrimination when the outcome is event
 - The ability of model to distinguish between the high and low risk
- Calibration
 - The agreement between the observed & predicted outcomes
- Predictive ability
 - What is the amount of prognostic information that the model provide
 - Accuracy of prediction at individual level: clinical decision making

Tools to assess a risk prediction model:

- Discrimination both rank bases measures
 - The c-index, $c \in [0.5,1]$ (see Berrar & Flach (2011) for pitfalls)
 - The D-statistic, $D \cong \sqrt{Var(PI)}$
- Calibration
 - Calibration plot: agreement bet. observed/predic. Outcomes
 - H-L Chi-squared test
- Predictive ability R²-type measure
 - At the population level: disease-related
 - At individual level: clinical decision making

- The outcome is a binary variable Y = [0,1]
- The mean of Y is $E(Y) = Pr(Y = 1) = \pi$
- The model is represented by $logit(\pi|X) = \beta X$
- In a logistic regression, assessment of the predictive ability can be summarised in different ways:
- Discrimination measures
 - AUC or the c-statistic
 - D-statistic
- *R*²-type measure:
 - On the probability scale: the Brier score
 - On a "latent" variable scale, i.e. $Y^* = logit(\pi | X)$
 - On the likelihood scale
- Each of these approaches answer different research questions.

- On the probability scale
 - Brier score: the squared difference between a patient's status and the predicted probability (p_i) for this patient

(average) Brier score =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - p_i)^2$$

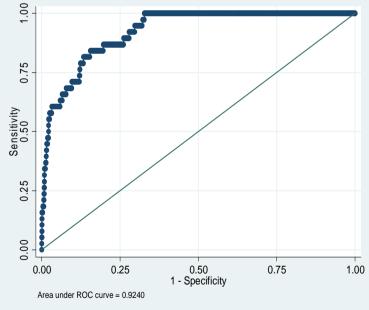
• One can write the model as a GLM

$$Y^* = \beta X + \varepsilon$$

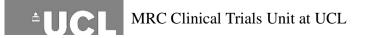
and $Y^* = logit(p|X)$, ε has a symmetric distribution around 0.

• One candidate is:

$$R^{2}{}_{LG} = \frac{Var(\beta X)}{Var(\beta X) + \pi^{2}/3}$$


- In a Probit model $\pi^2/_3$ is replaced with 1.
- R^2_{LG} is commonly used in social sciences

Example: child mortality for children with congenital heart disease


MRC Hubs for Trials Methodology Research

- Population cohort study of all children with CHD in Paris
- Outcome: Death
- Patients: 1166
- Deaths: 40
- Prognostic model: ACC-CHD, gestational age, sex, and birth weight

Item no	Measure	Estimate
1	R^2_{LG}	0.28
2	R^2_{Brier}	0.26
4	c – index	0.90

- Which measure to use:
- Use the *Brier score* if the interest is in accuracy of the estimates of Pr(Y = 1) at individual level.
- Use $R^2{}_{LG}$ to quantify the amount of prognostic information in the "latent" variable model.
- Use the c index if you want to describe the capacity that the model has for distinguishing an individual who experience the event from a non-event subject.

- It is not straightforward to define appropriate tools because:
 - Censoring makes it more complicated
 - The underlying distribution of time is unknown in the Cox PH model
 - The Cox model has no error term.
- Several tools proposed, but still **no consensus**

Predictive ability in survival models:

≜U(C

MRC Hubs for Trials Methodology Research

	Item no	Group	Nam e	Author	
	1		R^2_{PM}	Kent & O'Quigley (1988)	
	2		R^2_{KS}	Korn & Simon (1990)	
	3		R^2_{OF}	O'Quigley & Flandre (1994)	
	4	Explained Variation (EV)	R^2_{AK}	Akazawa (1997)	
	5		R^2_{XO}	Xu & O'Quigley (2001)	
	6		R^2_D	Royston & Sauerbrei (2004)	
	7		R^2_R	Royston (2006)	
-	8		${ ho^2}_W$	Kent & O'Quigley (1988)	
	9		${ ho^2}_{W,A}$	Kent & O'Quigley (1988)	
	10	Explained Randomness (ER)	ρ_n^2	Negelkerke (1991)	
	11		ρ^2_{XO}	Xu & O'Quigley (1999)	
	12		ρ^2_{K}	O'Quigley et al (2005)	
	13		V_{1}/V_{2}	Schemper (1990/1994)	
	14	Predictive Accuracy (PA)	$R^2_{BS}(T)$	Graf et al (1999)	
	15		$V_{SH}(T)$	Schemper & Henderson (2000)	
	16	Other	R^2_{SK}	Schemper & Kaider (1997)	
	17		R^2_H	Harrell (1986)	

ARC Hubs for Trials Methodology Research

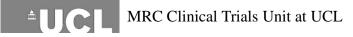
MRC Clinical Trials Unit Hub

Research Article

Received 18 January 2010, Accepted 9 February 2011 Published online 26 April 2011 in Wiley Online Library

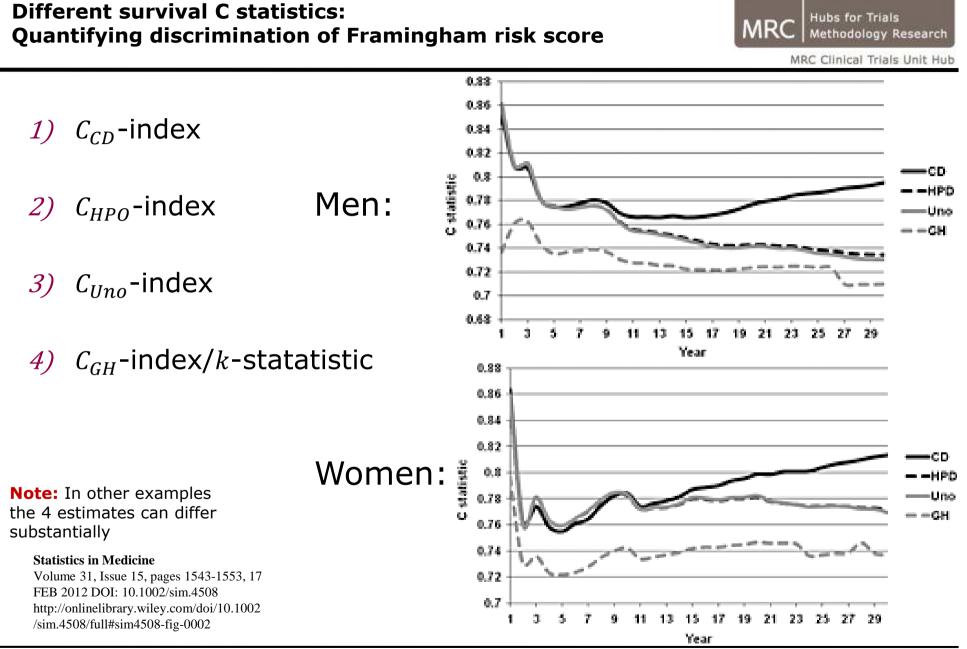
(wileyonlinelibrary.com) DOI: 10.1002/sim.4242

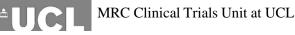
A simulation study of predictive ability measures in a survival model I: Explained variation measures


Babak Choodari-Oskooei*[†], Patrick Royston and Mahesh K. B. Parmar

A simulation study of predictive ability measures in a survival model II: explained randomness and predictive accuracy

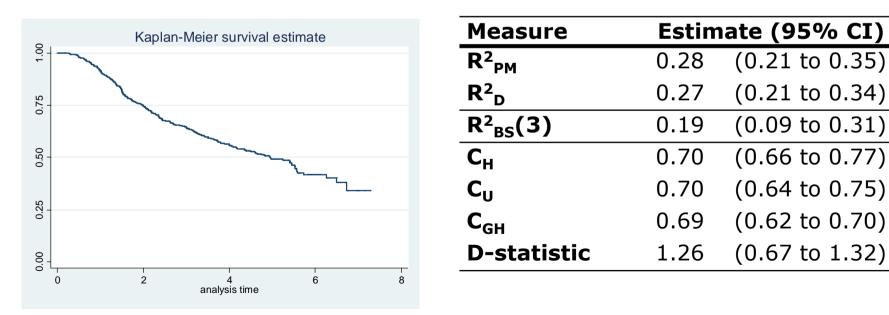
B. Choodari-Oskooei,*[†] P. Royston and Mahesh K. B. Parmar

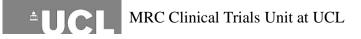

Several R^2 -type measures have been proposed to evaluate the predictive ability of a survival model. In Part I,

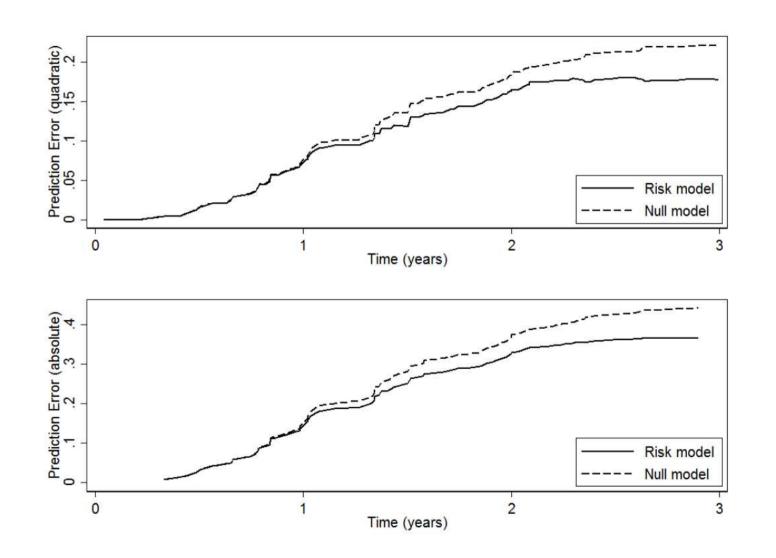

Predictive ability in survival models:

MRC Hubs for Trials Methodology Research

	Item no	Group	Nam e	Author	
	1		R^2_{PM}	Kent & O'Quigley (1988)	
sec	2		R^2_{KS}	Korn & Simon (1990)	
ba	3		R^2_{OF}	O'Quigley & Flandre (1994)	
el	4	Explained Variation (EV)	R^2_{AK}	Akazawa (1997)	
Model based	5		R^2_{XO}	Xu & O'Quigley (2001)	
M	6		R^2_D	Royston & Sauerbrei (2004)	
	7		R^2_R	Royston (2006)	
ed	8		$ ho^2{}_W$	Kent & O'Quigley (1988)	
as	9		${ ho^2}_{W,A}$	Kent & O'Quigley (1988)	
Model based	10	Explained Randomness (ER)	ρ_n^2	Negelkerke (1991)	
opo	11		ρ^2_{XO}	Xu & O'Quigley (1999)	
M	12		ρ^2_{K}	O'Quigley et al (2005)	
	13		V_{1}/V_{2}	Schemper (1990/1994)	
	14	Predictive Accuracy (PA)	$R^2_{BS}(T)$	Graf et al (1999)	
	15		$V_{SH}(T)$	Schemper & Henderson (2000)	
	16	Other	R^2_{SK}	Schemper & Kaider (1997)	
	17		R^2_H	Harrell (1986)	15







LSHTM seminars - 27 November 2015

- Outcome: PFS
- Patients: 686
- Events: 299
- Prognostic (Cox PH) model:
 - Age; tumour grade; positive lymph nodes; progesterone receptor; hormone therapy

- Aim of the study:
 - 1. Investigate the performance of a developed risk model
 - 2. Examine the performance of the tools, e.g. censoring impact
- Internal validation: Split sample, cross validation, bootstrapping
 - 2/3 development data
 - 1/3 validation or test data
- External validation: validation data is from a different a more homogenous population
 - 1. Low risk profile majority are long-term survivors
 - 2. High risk profile majority are short-term survivors

*)Ambler G, Rahman MS, Choodari-Oskooei B, Omar R (2015) Performance measures for validating risk models for survival data. Submitted to the International Journal of Epidemiology,

Validation of a risk prediction model: Results on internal validation - reproducibility

Censoring (%)	R ² _{PM} (SD) (0.28)	R ² _D (SD) (0.28)	R ² _{BS} (3) (SD) (0.19)
0	0.28 (0.04)	0.28 (0.04)	0.18 (0.04)
20	0.28 (0.04)	0.28 (0.04)	0.18 (0.04)
50	0.28 (0.05)	0.28 (0.05)	0.18 (0.05)
80	0.28 (0.07)	0.29 (0.07)	0.18 (0.08)

Censoring (%)	C _H (SD) (0.69)	C _u (SD) (0.69)	C _{GH} (SD) (0.69)	D (SD) (1.26)	CS
0	0.69 (0.02)	0.69 (0.02)	0.69 (0.01)	1.27 (0.11)	0.98 (0.10)
20	0.69 (0.02)	0.69 (0.02)	0.69 (0.01)	1.28 (0.12)	0.98 (0.11)
50	0.70 (0.02)	0.69 (0.02)	0.69 (0.02)	1.29 (0.15)	0.98 (0.13)
80	0.71 (0.04)	0.70 (0.06)	0.69 (0.02)	1.32 (0.23)	0.99 (0.18)

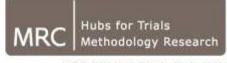
CS: calibration slope - the slope of the regression of the observed survival outcomes on the predicted prognostic index.

Validation of a risk prediction model: Results on external validation - transportability MRC Methodology Research

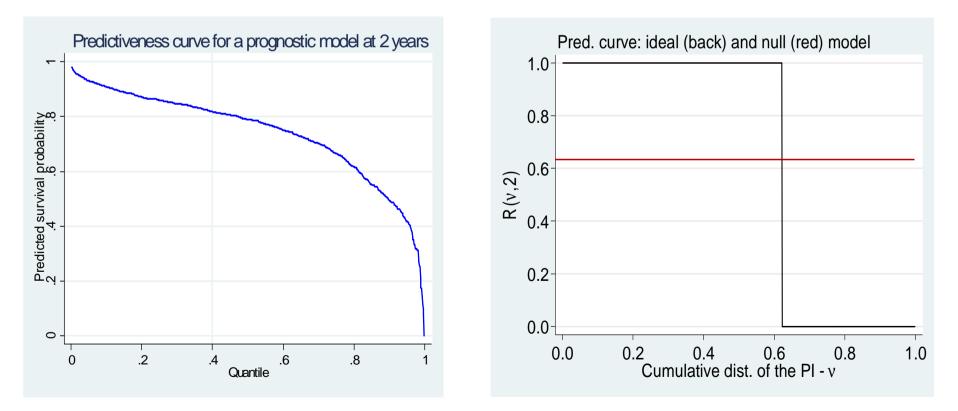
Risk Profile	Cens. (%	o) R ² _{PM} (SD) (0.28)		$\begin{array}{ll} R_{D}^{2}(SD) & R_{BS}^{2}(3)(SD) \\ (0.28) & (0.19) \end{array}$		
Low	0	0.23 (0.03	3) 0.23	(0.03)	0.13 (0.04)	
Low	20	0.23 (0.04	4) 0.23	(0.04)	0.13 (0.04)	
Low	50	0.23 (0.0	5) 0.24	(0.05)	0.13 (0.04)	
Low	80	0.24 (0.07	7) 0.26	(0.08)	0.13 (0.06)	
High	0	0.25 (0.04	4) 0.24	(0.03)	0.16 (0.04)	
High	20	0.25 (0.04	4) 0.24	(0.04)	0.16 (0.04)	
High	50	0.25 (0.0	5) 0.24	(0.05)	0.16 (0.05)	
High	80	0.25 (0.07	7) 0.25	(0.07)	0.16 (0.11)	
Risk	Cens. (%)	C _H (SD)	C _u (SD)	C _{GH} (SD)	D (SD)	CS
Profile		(0.69)	(0.69)	(0.69)	(1.26)	
Low	0	0.67 (0.02)	0.67 (0.02)	0.67 (0.01)	1.10 (0.11)	0.98 (0.11)
Low	20	0.67 (0.02)	0.67 (0.02)	0.67 (0.01)	1.11 (0.12)	0.98 (0.12)
Low	50	0.68 (0.02)	0.67 (0.02)	0.67 (0.02)	1.14 (0.15)	0.99 (0.14)
Low	80	0.69 (0.04)	0.67 (0.06)	0.67 (0.02)	1.20 (0.24)	0.99 (0.19)
High	0	0.68 (0.02)	0.68 (0.02)	0.68 (0.01)	1.16 (0.11)	0.98 (0.11)
High	20	0.68 (0.02)	0.68 (0.02)	0.68 (0.01)	1.16 (0.12)	0.98 (0.12)
High	50	0.68 (0.02)	0.68 (0.02)	0.68 (0.02)	1.16 (0.15)	0.98 (0.14)
High	80	0.69 (0.04)	0.68 (0.06)	0.68 (0.03)	1.19 (0.23)	0.99 (0.20)

MRC Clinical Trials Unit at UCL

LSHTM seminars – 27 November 2015

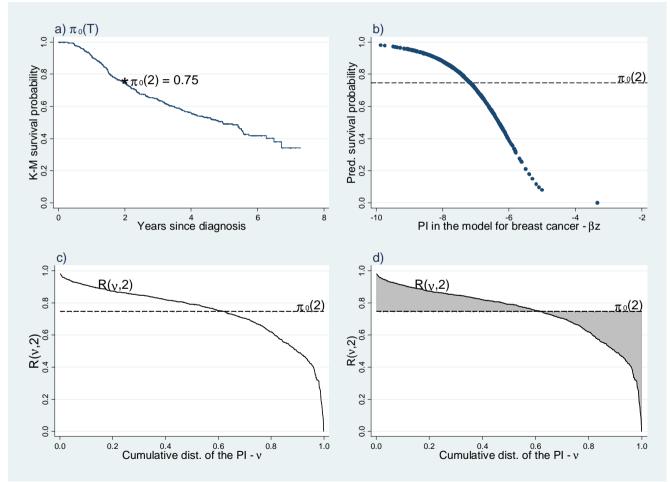


- Most existing measures of predictive ability only do not handle the case where time-dependent covariates (i.e. non-PH assumption) exist
- The existing explained variation measures only provide an estimate for the whole follow-up period



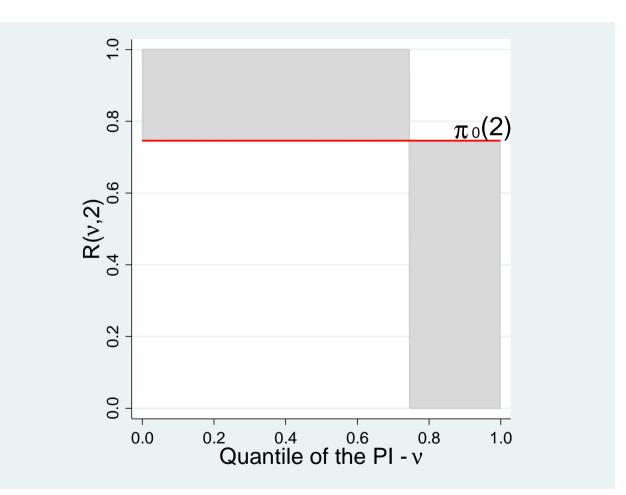
Total gain (TG) measure:

TG is based on the predictiveness curve


- MRC Clinical Trials Unit Hub
- Predictiveness curve is the distribution function of the predicted survival probabilities at time T.
- This gives the graph a useful interpretation
 - For example, 40% of the individuals in the data have predicted survival probabilities of more than 0.82

Total gain (TG) measure: TG is based on the predictiveness curve

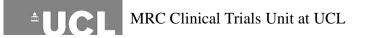
MRC Clinical Trials Unit Hub



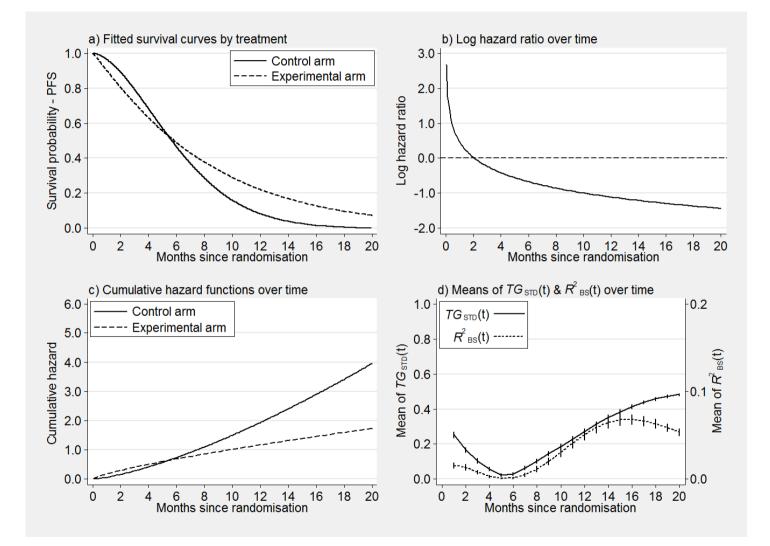
• The shaded area is the total gain (TG) statistic.

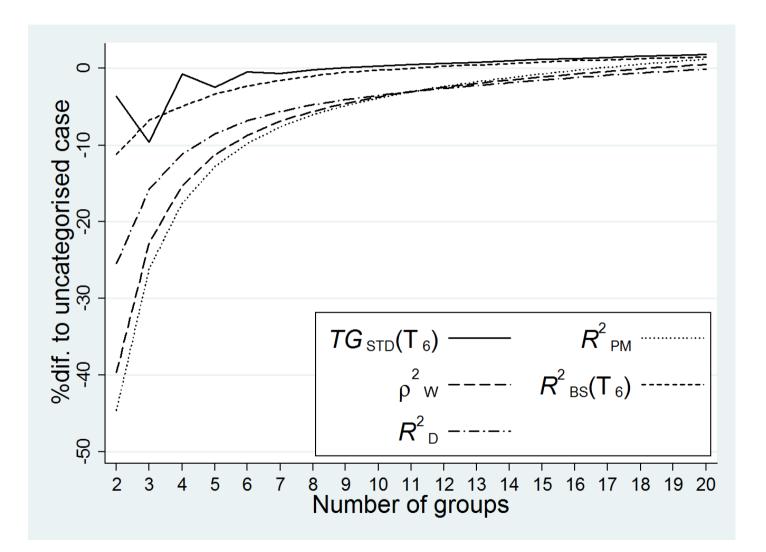
Total gain (TG) measure: TG is based on the predictiveness curve

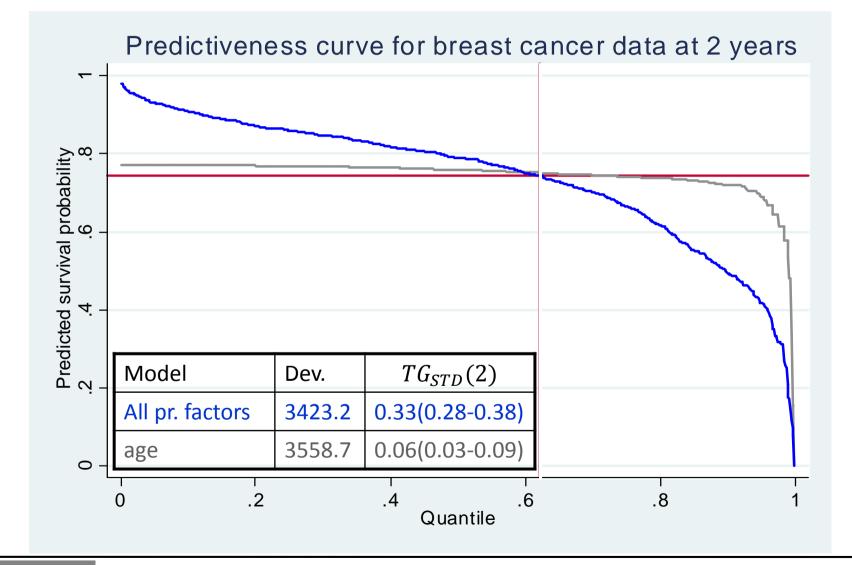
• Predictiveness curve for an "ideal" prognostic survival model



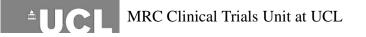
Properties of $TG_{STD}(T)$:



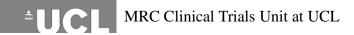

 $TG_{STD}(T)$ is:


- $TG_{STD}(T) \in [0,1],$
 - 0 means no predictive ability;
 - 1 means perfect predictive ability;
- A function of time: can deal with time-dependant covariates,
- Is not affected by random censoring,
- Is normally distributed,
- Can be extended to other survival models,

Properties of $TG_{STD}(T)$:



Some examples II: Other diseases


Study	$TG_{STD}(T_2)$	R^2_{PM}	R^2_D	$R^2_{BS}(T_2)$	C_{Uno} -index
Breast cancer	0.33	0.27	0.28	0.16	0.69
	(0.28-0.38)	(0.21-0.35)	(0.21-0.35)	(0.10-0.21)	
Lymphoma	0.21	0.10	0.09	0.11	0.62
	(0.07-0.36)	(0.02-0.28)	(0.02-0.30)	(0.01-0.18)	
Lymphoma + Gene factor	0.31	0.23	0.23	0.22	0.70
	(0.18-0.44)	(0.11-0.42)	(0.11-0.40)	(0.05-0.34)	
PBC – liver disease	0.62	0.56	0.65	0.47	0.80
	(0.54-0.70)	(0.48-0.65)	(0.55-0.74)	(0.38-0.58)	
Renal cancer	0.37	0.27	0.26	0.27	0.71
	(0.31-0.42)	(0.21-0.36)	(0.20-0.33)	(0.21-0.34)	
Prostate cancer	0.24	0.13	0.13	0.11	0.63
	(0.19-0.29)	(0.09-0.20)	(0.09-0.21)	(0.06-0.15)	

Conclusions

- In most diseases, there still remains a large uncertainty regarding risk predictions at the individual level
- The existing web-tools and risk calculators should be more transparent
- They should provide more information regarding the uncertainty associated with their predicted risk
- Long-term risk predictions are less accurate than short-term
- Applying a risk prediction model to a different population will affect its predictive ability, but might not change its discrimination
- Discrimination is only part of the story. It provides little or no information on the accuracy of risk predictions
- $TG_{STD}(T)$ can be used in survival model

- Design of a risk prediction study/model
 - E.g. sample size issue
 - What are the design parameters?
 - Define the "error rates" that need to be controlled?
- Repositories for risk prediction models in different diseases
 - Currently, the available information is widely dispersed!
- Comprehensive assessment of risk prediction models across different disease areas to compare the available prognostic information provided by clinical, biological, and genetic factors
- Dissemination and knowledge transfer of the available guidelines for prognostic studies in different disease areas

 "If you can measure that of which you speak, and can express it by a number, you know something of your subject, but if you cannot measure it, your knowledge is meagre and unsatisfactory."

William Thomson,

Lord Kelvin, engineer, mathematician, and physicist (1824–1907)

References

- Choodari-Oskooei B, Royston P, Parmar MKB (2015). The extension of total gain (TG) statistic in survival models: Properties and applications. *BMC Medical Research Methodology*. doi:10.1186/s12874-015-0042-x
- Choodari-Oskooei B, Royston P, Parmar MKB (2012). A simulation study of predictive ability measures in a survival model I: Explained variation measures. *Statistics in Medicine*, 31 (23), 2627-2643. doi:10.1002/sim.4242
- Choodari-Oskooei B, Royston P, Parmar MKB (2012). A simulation study of predictive ability measures in a survival model II: explained randomness and predictive accuracy. *Statistics in Medicine, 31 (23)*, 2644-2659. doi:10.1002/sim.5460
- Ambler G, Rahman MS, Choodari-Oskooei B, Omar R (2015) Performance measures for validating risk models for survival data. Submitted to the International Journal of Epidemiology,

