Causal mediation analysis of observational, population-based cancer survival data

Bernard Rachet & Ruoran Li Cancer Survival Group, Faculty of Epidemiology and Population Health, LSHTM

Twitter: @CSG_LSHTM

Outline

- Main questions
- Challenges with conventional approaches results from the past
- An example of applying mediation to cancer survival data
- Challenges and discussions
 - Misclassification of mediators
 - Treatment missing for more affluent sensitivity analysis
 - Under-staged deprived patients sensitivity analysis
 - Biases for mediation analyses
 - Controlled and natural effects
 - Conceptual frameworks Suggestions?

Inequalities in cancer survival

2004-2006

Explaining inequalities

Challenges in the past

• More deprived patients:

- More comorbidity
- More advanced cancer at diagnosis (colon, rectum, breast)
- More often diagnosed during emergency admission
- More often treated in non-specialised hospital and by non-specialised surgeon
- Received more often sub-optimal and delayed treatment (colon, rectum)

Past conventional analysis (colon, rectum, breast)

- No excess mortality hazard for deprivation among those treated within one month since diagnosis
- Adjusting for comorbidity did not modify the excess mortality hazard for deprivation
- Adjusting for stage reduced the excess mortality hazard for deprivation by less than a third
- Limited stage and treatment data and conventional analytic approaches did not enable identification of mechanisms underlying deprivation gap in survival

Outline

- Main question
- Challenges with conventional approaches results from the past
- An example of applying mediation to cancer survival data
- Challenges and discussions
 - Misclassification of mediators
 - Treatment missing for more affluent sensitivity analysis
 - Under-staged deprived patients sensitivity analysis
 - Biases for mediation analyses
 - Controlled and natural effects
 - Conceptual frameworks Suggestions?

How much of the socioeconomic differences in breast cancer patient survival can be explained by stage at diagnosis and treatment?

Application of causal mediation analysis to routine data

Ruoran Li, Rhian Daniel, Bernard Rachet Faculty of Epidemiology and Population Health London School of Hygiene & Tropical Medicine

Introducing breast cancer

- Most common cancer in the UK
- Screening (50-70)
- Treatment with strict guidelines
- Northern and Yorkshire Cancer Registry, population-based, covering 12% of the English population
- Women with malignant breast cancers (N=36,793)
 - Diagnosed during the period 2000–2007
 - Followed up until 31 December 2007

Large deprivation gap in survival from breast cancer...

Possible explanations

- Differential stage at diagnosis?
- Differential treatment?

Differential treatment? – probability of getting major surgery

15-49 pre-screening

50-69 screening

70+ post-screening

Linking to the conceptual diagram...

If we look at stage

We can **decompose** the total effect (TCE) of socioeconomic status (deprivation) on mortality into...

- Those mediated by stage (The indirect effect, NIE)

- Those not mediated by stage (The direct effect, NDE)

TCE = log(odds(Y(Dep=most, Stage(Dep=most)))) - log(odds(Y(Dep=least, Stage(Dep=least))))
NIE = log(odds(Y(Dep=most, Stage(Dep=most)))) - log(odds(Y(Dep=most, Stage(Dep=least))))
NDE = log(odds(Y(Dep=most, Stage(Dep=least)))) - log(odds(Y(Dep=least, Stage(Dep=least))))

If we look at treatment

We can **decompose** the total effect (TCE) of deprivation on mortality into...

- Those mediated by treatment (The indirect effect, NIE)

- Those not mediated by treatment (The direct effect, NDE)

 $\mathbf{TCE} = \log(\mathrm{odds}(\mathrm{Y}(\mathrm{Dep}=most,\mathrm{Treat}(\mathrm{Dep}=most)))) - \log(\mathrm{odds}(\mathrm{Y}(\mathrm{Dep}=least,\mathrm{Treat}(\mathrm{Dep}=least))))$

NIE = log(odds(Y(Dep=*most*, Treat(Dep=*most*)))) – log(odds(Y(Dep=*most*, Treat(Dep=*least*))))

 $NDE = \log(odds(Y(Dep=most, Treat(Dep=least)))) - \log(odds(Y(Dep=least, Treat(Dep=least))))$

G-formula results

Preliminary conclusions

- Breast cancer survival differed between the most deprived and most affluent patients
- Effect of deprivation on mortality:
 - Large total effect FOR ALL DEPRIVATION CATEGORIES:
 - Increasing with deprivation
 - Decreasing with time since diagnosis
 - Mediated via stage ONLY FOR MOST DEPRIVED CATEGORY:
 - One third of at six months
 - One tenth at three/five years since diagnosis
 - Mediated via treatment:
 - None

Outline

- Main questions
- Challenges with conventional approaches results from the past
- An example of applying mediation to cancer survival data
- Challenges and discussions
 - Misclassification of mediators
 - Treatment missing for more affluent sensitivity analysis
 - Under-staged deprived patients sensitivity analysis
 - Biases for mediation analyses
 - Controlled and natural effects
 - Conceptual frameworks Suggestions?

Misclassification of stage

- More deprived patients may be under-staged?
- Randomly "up-staging" 10%, 30% and 50% of most deprived patients...
- 10% up-staging did not change results much
- After 30%-50% upstaging, stage would mediate more than half of the survival differences
- Longer-term survival is more affected ...

Misclassification of treatment

- One report showed that 4% of surgical treatment for breast cancer were made in private hospital
- Sensitivity analysis:
 - Assumption: all missing surgery is among most affluent patients
 - Randomly adding "major surgery" to 4% of women, all from the most affluent category
- Now treatment mediates survival differences for the most deprived!

Biases for mediation analysis

- Unmeasured or poorly measured confounders, e.g. between mediator and outcome?
- Presence of confounder(s) between mediator and outcome affected by exposure?

Summary

- First application of the causal mediation tool in study of cancer registry data
- Population-based data
- Drawbacks
 - Data quality and detail
 - Unmeasured confounder, e.g. comorbidity
- Useful for answering questions related to causality
 - Resource allocation

References

- Woods L. M., Rachet B., Coleman M. P. 2005 Origins of socio-economic inequalities in cancer survival: a review. Ann Oncol 17(1):5-19
- Daniel, R. M., De Stavola, B. L., and Cousens, S. N. 2011. gformula: Estimating causal effects in the presence of time-varying confounding or mediation using the g-computation formula. The Stata Journal 11(4):479-517.
- Hernán M. A., Robins J. M. Causal Inference. Part II Causal inference with models <u>http://www.hsph.harvard.edu/miguel-</u> <u>hernan/files/2013/10/hernanrobins_v2.15.02.pdf</u> [updated 15 October 2013]

Questions for you

- How to deal with the potential biases, due to unmeasured/poorly measured confounders?
- Controlled vs. natural effects?
- How to deal with stage misclassification?
- Suggestions on the research questions or the frameworks?

