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Inequalities in cancer 

survival
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Explaining inequalities



Challenges in the past

• More deprived patients:
– More comorbidity
– More advanced cancer at diagnosis (colon, rectum, breast)
– More often diagnosed during emergency admission
– More often treated in non-specialised hospital and by non-specialised surgeon
– Received more often sub-optimal and delayed treatment (colon, rectum)

• Past conventional analysis (colon, rectum, breast)
– No excess mortality hazard for deprivation among those treated within one month 

since diagnosis
– Adjusting for comorbidity did not modify the excess mortality hazard for deprivation 
– Adjusting for stage reduced the excess mortality hazard for deprivation by less than 

a third

– Limited stage and treatment data and conventional analytic approaches did not 
enable identification of mechanisms underlying deprivation gap in survival
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How much of the socioeconomic 

differences in breast cancer 

patient survival can be explained 

by stage at diagnosis and 

treatment?
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Introducing breast cancer

• Most common cancer in the UK

• Screening (50-70)

• Treatment with strict guidelines

• Northern and Yorkshire Cancer Registry, population-based, covering 12% of 
the English population 

• Women with malignant breast cancers (N=36,793)

– Diagnosed during the period 2000–2007 

– Followed up until 31 December 2007 



Large deprivation gap in survival 

from breast cancer…



Possible explanations 

• Differential stage at diagnosis?

• Differential treatment?



Differential stage at diagnosis?

Deprivation
All 

patients
Least 

deprived 2 3 4
Most 

deprived

Stage at diagnosis (%)

I 38 41 39 38 36 35

II 43 44 44 42 43 43

III 7 6 6 7 7 7

IV 5 3 4 5 5 6

Missing 8 6 7 9 9 9



Differential treatment?

– probability of getting major surgery
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Linking to the conceptual 

diagram…



If we look at stage

We can decompose the total effect 
(TCE) of socioeconomic status 
(deprivation) on mortality into…

- Those mediated by stage (The 
indirect effect, NIE)

- Those not mediated by stage (The 
direct effect, NDE)

NIE = log(odds(Y(Dep=most, Stage(Dep=most)))) – log(odds(Y(Dep=most, Stage(Dep=least))))

NDE = log(odds(Y(Dep=most, Stage(Dep=least)))) – log(odds(Y(Dep=least, Stage(Dep=least))))

TCE = log(odds(Y(Dep=most, Stage(Dep=most)))) – log(odds(Y(Dep=least, Stage(Dep=least))))



If we look at treatment

We can decompose the total effect 
(TCE) of deprivation on mortality 
into…

- Those mediated by treatment (The 
indirect effect, NIE)

- Those not mediated by treatment 
(The direct effect, NDE)

NIE = log(odds(Y(Dep=most, Treat(Dep=most)))) – log(odds(Y(Dep=most, Treat(Dep=least))))

NDE = log(odds(Y(Dep=most, Treat(Dep=least)))) – log(odds(Y(Dep=least, Treat(Dep=least))))

TCE = log(odds(Y(Dep=most, Treat(Dep=most)))) – log(odds(Y(Dep=least, Treat(Dep=least))))



G-formula results

6 months 12 months 3 years 5 years

Total effect

Effect via 
stage

Effect via 
treatment



Preliminary conclusions

• Breast cancer survival differed between the most deprived and 
most affluent patients

• Effect of deprivation on mortality:
– Large total effect FOR ALL DEPRIVATION CATEGORIES:

• Increasing with deprivation

• Decreasing with time since diagnosis 

– Mediated via stage ONLY FOR MOST DEPRIVED CATEGORY:

• One third of at six months 

• One tenth at three/five years since diagnosis

– Mediated via treatment:

• None
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Misclassification 

of stage

• More deprived patients 
may be under-staged?

• Randomly “up-staging” 
10%, 30% and 50% of most 
deprived patients…

• 10% up-staging did not 
change results much

• After 30%-50% upstaging, 
stage would mediate more 
than half of the survival 
differences

• Longer-term survival is 
more affected …
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Misclassification of 

treatment

• One report showed that 4% of 
surgical treatment for breast 
cancer were made in private 
hospital

• Sensitivity analysis:

– Assumption: all missing surgery 
is among most affluent patients

– Randomly adding “major 
surgery” to 4% of women, all 
from the most affluent category

• Now treatment mediates survival 
differences for the most deprived!



Biases for mediation 

analysis

• Unmeasured or poorly 
measured confounders, e.g. 
between mediator and 
outcome?

• Presence of confounder(s) 
between mediator and 
outcome affected by 
exposure?



Summary

• First application of the causal mediation tool in study of cancer 
registry data

• Population-based data

• Drawbacks

– Data quality and detail

– Unmeasured confounder, e.g. comorbidity

• Useful for answering questions related to causality

– Resource allocation 
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Questions for you

• How to deal with the potential biases, 
due to unmeasured/poorly measured 
confounders?

• Controlled vs. natural effects?

• How to deal with stage misclassification?

• Suggestions on the research questions or 
the frameworks?


