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First, something about my other projects

m Cunen, C.,, Hermansen, G. and Hjort, N.L. (2017).
Confidence distributions for change-points and regime
shifts. Journal of Statistical Planning and Inference.

m Model selection for meta-analysis of 2 x 2 tables using the
focused information criteria (FIC) — in progress (with NLH).

m A FIC for linear mixed effect (LME) models:
An application: Cunen, C., Wallge, L. and Hjort, N.L. (2017).
Decline in energy storage in Antarctic Minke whales
during the JARPA period: Assessment via the Focused
Information Criterion (FIC). Reports of the Scientific
Committee of the International Whaling Commision.
A "methods" paper on its way: Model selection for linear
mixed models via the Focused Information Criterion, with
an application to whale ecology.

m Competing risks with gamma process threshold crossing
models (with NLH).
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Gamma process models for competing risks
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The Problem - Combination of information

We have independent data sources 1, ..., k providing information
about parameters 11, ..., 1 .
Our interest is in the overall focus parameter ¢ = ¢(1)1, ..., 1)

m |I-CC-FF: a general framework to provide inference for ¢ in
cases like this.
Similar to likelihood synthesis from Schweder and Hjort (1996)

m Beyond ordinary meta-analysis:
not restricted to cases where the sources inform on the same
parameter — we can deal with complex functions of the
parameters from each source: ¢ = ¢(¢1, ..., 0k)
we can deal with cases where we only have summary statistics
from some or all of the sources
we can handle very diverse sources — for example combining
parametric and non-parametric analyses
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Confidence distributions (CD)

Confidence distribution Confidenge density Confidence curve

(1)
1)

C(w

B = a posterior without having to specify a prior
a sample-dependent distribution function on the parameter space
can be used for inference (for example for constructing confidence
intervals of all levels)
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Requirements for CDs

A function C(0, Y) is called a confidence distribution for a
parameter 0 if:

C(0,Y) is a cumulative distribution function on the
parameter space

at the true parameter value 6 = 6y, C(6p, Y) as a function of
the random sample Y follows the uniform distribution U[0,1]

The second requirement ensures that all confidence intervals
have the correct coverage.

Note that any method producing confidence intervals fulfilling
these requirements can be used to make CDs (no-matter the
underlying paradigm).

More on CDs in Confidence, Likelihood, Probability.
(Schweder and Hjort, 2016.)
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Outline

m |I-CC-FF - general procedure

m Examples illustrating what 1I-CC-FF can do
Classic meta-analysis
More complex meta-analysis: Blood loss
Random effects: All Blacks
Very diverse sources: First word
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[I-CC-FF - overview

Combining information, for inference about a focus parameter

¢ = (Z)(wlv 7¢k)1

Il: Independent Inspection: From data source y; to estimates and
intervals, in the form of a confidence distribution/curve:

yi = Gi(¢)

CC: Confidence Conversion: From the confidence distribution to a
confidence log-likelihood,

Ci(vi) = Lc,i(¥i)

FF: Focused Fusion: Use the combined confidence log-likelihood
Ce(1, .. k) = Zf'(:l Lc,i(vi) to construct a CD for the given
focus ¢ = (1, ..., 1), often via profiling:

Ce(hr, oo, Vi) = Chusion(®)
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Constructing CDs via Wilks' theorem

In many regular cases we have, at the true parameter value y:

2{€n,prof("l;) - gn,prof(wO)} —d X%a

as the sample size n increases. This gives us our favourite
approximate confidence curve construction,

N

CC(1/}) = r1(2{€n,prof(w) - En,prof(w)})‘
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CC - Confidence Conversion

The most difficult step?

Ci(vi) = Lci(4))

In some cases we will already have a log-likelihood for ; from the
Il-step and then there are no problems.

In other cases, the confidence curves from the |l-step are not
constructed via likelihoods.

Then we need to do something else (and be more careful). A
simple and general method - the normal conversion:

(i) = =4T 1 ee(w, y)) = —=3{O71(C (v, )}

[Note that the confidence log-likelihood is not equal to the log-confidence
density (log 9C(1)/0¢). Except under the normal model.]
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We can deal with 1: Classic meta-analysis

Assume all sources inform on the exact same parameter

WY1 = --- =1, = 1, and that each source provide estimators ;
that are normally distributed N(l/J,O'jz) with known ojs.

Il: Data source y; leads to Ci(¢)) = ®((v) — ;) /o).

CC: From Ci() to £ci(v) = —%(1/1 - @i)2/0,'2-

FF: Summing £¢(¢)) = 32K, c.i(4) leads to the classic answer

2 Zﬁ(:ﬁf’i/o’? ( e 2 —1)
§ == N, (Y 1/0))7 ).
Zf'(:ll/aiz (,z:; o)
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We can deal with 2: more complicated meta-analysis

We do not have access to the full dataset (only summaries), and the
studies differ in their reported outcomes: some studies report continuous
outcomes, others report counts of a binary outcome.

Example from Whitehead et al. (1999): Blood loss during labor. Does
treatment with oxytocic drugs help reduce blood loss?

Total of 11 studies, 6 studies report summary statistics of the continuous
outcome (the actual blood loss in ml):

Treatment n Mean SD

Study 1 Control 510 325.75 288.61
Treatment 490 255.60 213.74

Study 2

5 studies report counts of a binary outcome (yes = blood loss greater
than 500 ml):

Treatment  Yes No Total

Study 7 Control 152 697 849
Treatment 50 796 846
Study8 12/29




2: Blood loss
Model: y;j = aj + Bzjj + €j; ej ~ N(0,02)

Il'and CC: If study / has a continuous outcome we have
lei(@i, B,0) = —(m + m)log(0) — {(n — 1) + (n2 — 1)s5 +
m (71— i)? + m(72 — a; — 8)*}/(202).

If study 7 has a binary outcome we have ¢, j(«aj, 3,0) =
X01 |og{¢((500 — Oé,')/U)} + X11 Iog{l — ¢((500 — Oz,')/O')} +
X02 |og{¢((500 — o — ﬁ)/U)} + X12 |Og{1 — ¢((500 — o — 5)/0)}

FF: Summing

Ce(1y oy, By 0) = S8 Ui, By0) + SRty i(i, B, 0) and
then profiling 4¢ pror(B) = L£(81(5), ..., i (B), B,6(8)) and we get
a combined confidence curve for 3 by using the Wilks'

approximation

CC(B) = r1{2(€f,prof(6) - gf,prof(ﬁ))}'

13/29



2: Blood loss
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Oxytocic drugs is seen to decrease blood loss.
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We can deal with 3: Random effects!
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3: All Blacks

We have measures of “passage times” in 10 Rugby games (=
studies). There are 5 games before a certain change of rules and 5
after.

Model: y;; ~ Gammal(aj, b;)
Say we are interested in the standard deviation of passage times

ki = \/ai/ bi.

It is relatively straightforward to construct confidence curves for
each r; (by profiling and Wilks' approximation).

I: cci(ki) = T1{2(4i prof (Ri) — i prof (ki) }
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3: All Blacks
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There seems to be smaller standard deviations in passage times (smaller
ks) after the rule change.
But there is substantial spread in the mean ks between different games -

do we need random effects?
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3: All Blacks

We assume :

m Before rule change k1, ...k5 ~ N(kg,73) and

m After rule change ks, ...k10 ~ N(ka,73) -

We are interested in making confidence curves for kg, k4, and the
ratio between them 0 = kg/Ka.

CC: We already have the ; pof (i) from the ll-step, but now we

need ¢;(kp,7g) (and similarly for the parameters after the rule
change):

6,-(/43, TB) = IOg[/ exp{ei,prof(ﬁ ) ,prof(/f )} (b ( _B ) /]
(We integrate numerically or use Laplace approximation)
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3: All Blacks

FF: Summing ¢f(kp,T8) = Zf{il li(kg,TB), profile to get
¢ prof(kB) and Wilks' approximation to get cc(kg). Similarly for
cc(ka)
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3: All Blacks - computation

For fast computation of the Laplace approximation and the
subsequent profiling, we can make use of the TMB package
(Template Model Builder, related to the ADMB).
https://github.com /kaskr/adcomp/wiki

One simply(?) needs to write down an objective

function/likelihood in C4++. Then one specifies which parameters
to profile out and which to integrate over.
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3: All Blacks

The ratio § = kg/ka. Sum, profile and Wilks':
U (KB, 0) = L prof,B(KB) + Lf prof,A(kB/0), then
L () = L (Rp(0),0).

confidence curve
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We can deal with 4: Very diverse sources

We have two sources:
m A large study: 1640 parents report the age (in months) at
which their child said its first word. Ranges from 1 (!) to 25.

m A small study: 51 parents report the age (in months) at which
their child said its first word. Here we have some covariate
information: gender (of the child).

Focus: When do girls start to speak? And when do boys start to
speak?

Model: proportional hazards model (no censoring here - but we
could have dealt with that too!)

Question: can the large (low-quality) study improve our analysis of
the small study?

Data from: Schneider, Yurovsky & Frank (2015). Large-scale investigations of variability in children’s first words.

In CogSci2015 Proceedings. 22/29



4. Age at first word

Focus: probability that a child with covariate information xp does
not speak at the age of 12 months

S(to|x0) = e~ M) = 5o(1)*” = (1-Fo(10))*™"  with to = 12.

m Large study: will give information about Fy at tp -
= cc1(Fo(to)). Non-parametric!

m Small study: will give information about 5 = cca(3). Cox
model - Semi-parametric!

with 1I-CC-FF we can combine these and obtain a cc for S(tp|x0)
with tp = 12.
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4. Age at first word

Obtaining a confidence curve for the “baseline” Fy (at to = 12).
An exact CD based on the binomial distribution.
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4. Age at first word

Obtaining a confidence curve for the coefficient 5 (taking care to
define gender as 1/-1, so that the value 0 corresponds to the
overall mean)

Approximate CD based on the normal distribution (here we only
need the summary statistics: estimate and standard error).

confidence curve
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4. Age at first word
FF: summing ¢¢(Fo, B) = ¢1(Fo) + ¢2(3) and profiling

L prof (S(to]x0)) = max{l¢(Fo, ) : (1 — Fo(fo))exéﬁ = S(to|x0)}

and then Wilks' approximation.
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4. Age at first word

Comparing with results from small source only.

confidence curve
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Concluding remarks

What can II-CC-FF do?
m Deal with summary statistics

m Deal with complex functions of the parameters from each
source: ¢ = ¢(P1,...,Yk)

m Deal with very diverse sources (hard and soft data; improving
inference from small, carefully designed studies by using large,
"less-informative” datasets; ...)

Some remaining challenges:

m Neyman-Scott type problems
m Corrections for improving the Wilks' approximation

m Real applications!
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