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First, something about my other projects

Cunen, C., Hermansen, G. and Hjort, N.L. (2017).
Confidence distributions for change-points and regime
shifts. Journal of Statistical Planning and Inference.

Model selection for meta-analysis of 2× 2 tables using the
focused information criteria (FIC) – in progress (with NLH).

A FIC for linear mixed effect (LME) models:
An application: Cunen, C., Walløe, L. and Hjort, N.L. (2017).
Decline in energy storage in Antarctic Minke whales
during the JARPA period: Assessment via the Focused
Information Criterion (FIC). Reports of the Scientific
Committee of the International Whaling Commision.
A ”methods” paper on its way: Model selection for linear
mixed models via the Focused Information Criterion, with
an application to whale ecology.

Competing risks with gamma process threshold crossing
models (with NLH).
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Gamma process models for competing risks
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The Problem - Combination of information

We have independent data sources 1, . . . , k providing information
about parameters ψ1, . . . , ψk .
Our interest is in the overall focus parameter φ = φ(ψ1, . . . , ψk ).

II-CC-FF: a general framework to provide inference for φ in
cases like this.

Similar to likelihood synthesis from Schweder and Hjort (1996)

Beyond ordinary meta-analysis:

not restricted to cases where the sources inform on the same
parameter – we can deal with complex functions of the
parameters from each source: φ = φ(ψ1, . . . , ψk )
we can deal with cases where we only have summary statistics
from some or all of the sources
we can handle very diverse sources – for example combining
parametric and non-parametric analyses
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Confidence distributions (CD)
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≈ a posterior without having to specify a prior
a sample-dependent distribution function on the parameter space
can be used for inference (for example for constructing confidence
intervals of all levels)
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Requirements for CDs

Definition

A function C (θ,Y ) is called a confidence distribution for a
parameter θ if:

C (θ,Y ) is a cumulative distribution function on the
parameter space

at the true parameter value θ = θ0, C (θ0,Y ) as a function of
the random sample Y follows the uniform distribution U[0,1]

The second requirement ensures that all confidence intervals
have the correct coverage.

Note that any method producing confidence intervals fulfilling
these requirements can be used to make CDs (no-matter the
underlying paradigm).

More on CDs in Confidence, Likelihood, Probability.
(Schweder and Hjort, 2016.)
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Outline

II-CC-FF - general procedure

Examples illustrating what II-CC-FF can do
Classic meta-analysis
More complex meta-analysis: Blood loss
Random effects: All Blacks
Very diverse sources: First word
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II-CC-FF - overview

Combining information, for inference about a focus parameter
φ = φ(ψ1, . . . , ψk ):
II: Independent Inspection: From data source yi to estimates and
intervals, in the form of a confidence distribution/curve:

yi =⇒ Ci (ψi )

CC: Confidence Conversion: From the confidence distribution to a
confidence log-likelihood,

Ci (ψi ) =⇒ `c,i (ψi )

FF: Focused Fusion: Use the combined confidence log-likelihood
`f (ψ1, . . . , ψk ) =

∑k
i=1 `c,i (ψi ) to construct a CD for the given

focus φ = φ(ψ1, . . . , ψk ), often via profiling:

`f (ψ1, . . . , ψk ) =⇒ Cfusion(φ)
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Constructing CDs via Wilks’ theorem

In many regular cases we have, at the true parameter value ψ0:

2{`n,prof (ψ̂)− `n,prof (ψ0)} →d χ
2
1,

as the sample size n increases. This gives us our favourite
approximate confidence curve construction,

cc(ψ) = Γ1(2{`n,prof (ψ̂)− `n,prof (ψ)}).
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CC - Confidence Conversion

The most difficult step?

Ci (ψi ) =⇒ `c,i (ψi )

In some cases we will already have a log-likelihood for ψi from the
II-step and then there are no problems.

In other cases, the confidence curves from the II-step are not
constructed via likelihoods.

Then we need to do something else (and be more careful). A
simple and general method - the normal conversion:

`c (ψ) = −1
2 Γ−1

1 (cc(ψ, y)) = −1
2{Φ

−1(C (ψ, y))}2.

[Note that the confidence log-likelihood is not equal to the log-confidence

density (log ∂C (ψ)/∂ψ). Except under the normal model.]
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We can deal with 1: Classic meta-analysis

Assume all sources inform on the exact same parameter
ψ1 = · · · = ψk = ψ, and that each source provide estimators ψ̂i

that are normally distributed N(ψ, σ2
j ) with known σj s.

II: Data source yi leads to Ci (ψ) = Φ((ψ − ψ̂i )/σi ).

CC: From Ci (ψ) to `c,i (ψ) = −1
2 (ψ − ψ̂i )

2/σ2
i .

FF: Summing `f (ψ) =
∑k

i=1 `c,i (ψ) leads to the classic answer

ψ̂ =

∑k
i=1 ψ̂i/σ

2
i∑k

i=1 1/σ2
i

∼ N

(
ψ, (

k∑
i=1

1/σ2
i )−1

)
.
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We can deal with 2: more complicated meta-analysis

We do not have access to the full dataset (only summaries), and the
studies differ in their reported outcomes: some studies report continuous
outcomes, others report counts of a binary outcome.

Example from Whitehead et al. (1999): Blood loss during labor. Does
treatment with oxytocic drugs help reduce blood loss?
Total of 11 studies, 6 studies report summary statistics of the continuous
outcome (the actual blood loss in ml):

Treatment n Mean SD

Study 1 Control 510 325.75 288.61
Treatment 490 255.60 213.74

Study 2 ... ... ... ...

5 studies report counts of a binary outcome (yes = blood loss greater
than 500 ml):

Treatment Yes No Total

Study 7 Control 152 697 849
Treatment 50 796 846

Study 8 ... ... ... ... 12/29



2: Blood loss

Model: yij = αi + βzij + εij εij ∼ N(0, σ2)

II and CC: If study i has a continuous outcome we have
`c,i (αi , β, σ) = −(n1 + n2) log(σ)− {(n1 − 1)s2

1 + (n2 − 1)s2
2 +

n1(ȳ1 − αi )
2 + n2(ȳ2 − αi − β)2}/(2σ2).

If study i has a binary outcome we have `b,i (αi , β, σ) =
x01 log{Φ((500− αi )/σ)}+ x11 log{1− Φ((500− αi )/σ)}+
x02 log{Φ((500− αi − β)/σ)}+ x12 log{1−Φ((500− αi − β)/σ)}.

FF: Summing
`f (α1, ..., αk , β, σ) =

∑kc
i=1 `c,i (αi , β, σ) +

∑kb
i=1 `b,i (αi , β, σ) and

then profiling `f ,prof (β) = `f (α̂1(β), ..., α̂k (β), β, σ̂(β)) and we get
a combined confidence curve for β by using the Wilks’
approximation

cc(β) = Γ1{2(`f ,prof (β̂)− `f ,prof (β))}.
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2: Blood loss
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Oxytocic drugs is seen to decrease blood loss.
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We can deal with 3: Random effects!
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3: All Blacks

We have measures of “passage times” in 10 Rugby games (≈
studies). There are 5 games before a certain change of rules and 5
after.
Model: yij ∼ Gamma(ai , bi )
Say we are interested in the standard deviation of passage times
κi =

√
ai/bi .

It is relatively straightforward to construct confidence curves for
each κi (by profiling and Wilks’ approximation).

II: cci (κi ) = Γ1{2(`i ,prof (κ̂i )− `i ,prof (κi ))}

16/29



3: All Blacks
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There seems to be smaller standard deviations in passage times (smaller
κs) after the rule change.
But there is substantial spread in the mean κs between different games -
do we need random effects?
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3: All Blacks

We assume :

Before rule change κ1, ...κ5 ∼ N(κB , τ
2
B) and

After rule change κ6, ...κ10 ∼ N(κA, τ
2
A) .

We are interested in making confidence curves for κB , κA, and the
ratio between them δ = κB/κA.

CC: We already have the `i ,prof (κi ) from the II-step, but now we
need `i (κB , τB) (and similarly for the parameters after the rule
change):

`i (κB , τB) = log[

∫
exp{`i ,prof (κi )−`i ,prof (κ̂i )}

1

τB
φ

(
κi − κB

τB

)
dκi ]

(We integrate numerically or use Laplace approximation)
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3: All Blacks

FF: Summing `f (κB , τB) =
∑kB

i=1 `i (κB , τB), profile to get
`f ,prof (κB) and Wilks’ approximation to get cc(κB). Similarly for
cc(κA).
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3: All Blacks - computation

For fast computation of the Laplace approximation and the
subsequent profiling, we can make use of the TMB package
(Template Model Builder, related to the ADMB).
https://github.com/kaskr/adcomp/wiki

One simply(?) needs to write down an objective
function/likelihood in C++. Then one specifies which parameters
to profile out and which to integrate over.
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3: All Blacks

The ratio δ = κB/κA. Sum, profile and Wilks’:
`ff (κB , δ) = `f ,prof ,B(κB) + `f ,prof ,A(κB/δ), then
`ff (δ) = `ff (κ̂B(δ), δ).
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We can deal with 4: Very diverse sources

We have two sources:

A large study: 1640 parents report the age (in months) at
which their child said its first word. Ranges from 1 (!) to 25.

A small study: 51 parents report the age (in months) at which
their child said its first word. Here we have some covariate
information: gender (of the child).

Focus: When do girls start to speak? And when do boys start to
speak?

Model: proportional hazards model (no censoring here - but we
could have dealt with that too!)

Question: can the large (low-quality) study improve our analysis of
the small study?

Data from: Schneider, Yurovsky & Frank (2015). Large-scale investigations of variability in children’s first words.

In CogSci2015 Proceedings. 22/29



4: Age at first word

Focus: probability that a child with covariate information x0 does
not speak at the age of 12 months

S(t0|x0) = e−H0(t0)ext
0β = S0(t0)ext

0β = (1−F0(t0))ext
0β with t0 = 12.

Large study: will give information about F0 at t0 -
=⇒ cc1(F0(t0)). Non-parametric!

Small study: will give information about β =⇒ cc2(β). Cox
model - Semi-parametric!

with II-CC-FF we can combine these and obtain a cc for S(t0|x0)
with t0 = 12.
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4: Age at first word

Obtaining a confidence curve for the “baseline”F0 (at t0 = 12).
An exact CD based on the binomial distribution.
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4: Age at first word

Obtaining a confidence curve for the coefficient β (taking care to
define gender as 1/-1, so that the value 0 corresponds to the
overall mean)
Approximate CD based on the normal distribution (here we only
need the summary statistics: estimate and standard error).
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4: Age at first word

FF: summing `f (F0, β) = `1(F0) + `2(β) and profiling

`f ,prof (S(t0|x0)) = max{`f (F0, β) : (1− F0(t0))ext
0β = S(t0|x0)}

and then Wilks’ approximation.

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S(12)

co
nf

id
en

ce
 c

ur
ve

Girl

Boy

26/29



4: Age at first word

Comparing with results from small source only.
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Concluding remarks

What can II-CC-FF do?

Deal with summary statistics

Deal with complex functions of the parameters from each
source: φ = φ(ψ1, . . . , ψk )

Deal with very diverse sources (hard and soft data; improving
inference from small, carefully designed studies by using large,
”less-informative” datasets; ...)

Some remaining challenges:

Neyman-Scott type problems

Corrections for improving the Wilks’ approximation

Real applications!
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