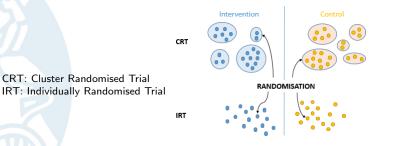


Methodological issues in the design and analysis of cluster randomised trials

Clémence Leyrat


Department of Medical Statistics, LSHTM

Challenges in CRTs

Cluster randomised trials

In randomised trials, **different randomisation units** can be used (participants or clusters of participants)

The similarity of the observations within the same cluster is quantified by the **intraclass correlation coefficient** (ICC)

Background CRTs Challenges Bias Pragmatism Statistical

Statistical analysis Small-sample The ICC

Trials or observational studies?

CRTs share characteristics with IRTs and observational studies: CRTs Challenges Observational studies CRTs IRTs Selection bias Balance at baseline Ideal-world Real-life Small-sample The ICC Difficulty to combine evidence Meta-analyses « Complex » statistical analysis « Simple » statistical analysis

Biases in CRTs:

How to detect them in CRTs

Background CRTs Challenges

Bias

Pragmatism

Statistical analysis Small-sample The ICC

Discussion

Challenges in CRTs

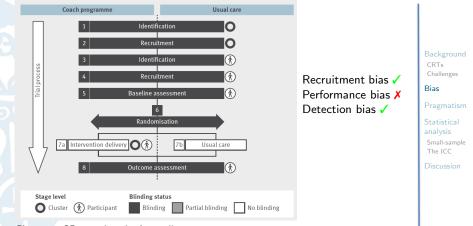
Biases in CRTs

In CRTs, bias can arise from the design, according to:

- the chronology
- recruitment procedure
- blinding

Development of a graphical tool¹: Timeline cluster

 $^1\text{Caille}$ et al.. Timeline cluster: a graphical tool to identify risk of bias in cluster randomised trials.BMJ. 2016;354:i4291


Background CRTs Challenges Bias

Pragmatism

Statistical analysis Small-sample The ICC

Timeline cluster

Clusters: GP practices in Australia **Intervention**: Nurse training on coaching on glycaemic control of type 2 diabetes **Outcome**: Glycated haemoglobin

Timeline cluster is a qualitative tool to identify the risk of bias

Can be adapted for more complicated designs such as cluster cross-over designs

This graph should be reported in protocols and publications

Background CRTs Challenges

Bias

Pragmatism

Statistical analysis Small-sample The ICC

Pragmatism in CRTs:

Do CRT and IRT estimate the same effects? Can we meta-analyse them together? Background CRTs Challenges

Bias

Pragmatism

Statistical analysis Small-sample The ICC

MEpiCluster

CRTs are thought to be more pragmatic than IRTs

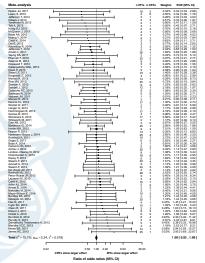
How does it impact intervention effect estimates?

⇒ Disagreements in the literature

Meta-epidemiological study to compare intervention effect estimates in CRTs and IRTs:

- Inclusion of Cochrane systematic reviews
- 76 meta-analyses with a binary outcome: 917 trials: 734 IRTs and 183 CRTs
- 45 meta-analyses with a continuous outcome: 541 trials: 410 IRTs and 131 CRTs

Background CRTs Challenges


Pragmatism

Statistical analysis Small-sample The ICC

Results

For binary outcomes: ROR=1.00 [0.93;1.08]

Similar result in subgroups:

✓ objective v. subjective
✓ pharmacological v.
non pharmacological
✓ active v. inactive control

For continuous outcomes: DSMD=0.13 [0.06;0.19]

> X high heterogeneityX no difference when adjusting on sample size

Background CRTs Challenges

Bias

Pragmatism

Statistical analysis Small-sample The ICC

Implications

From this study, **no substantial differences** between intervention effect estimates from IRTs and CRTs:

- They can be meta-analysed together IF clustering accounted for properly
- They estimate the "same" effect

Background CRTs Challenges

Pragmatism

Statistical analysis Small-sample The ICC

Statistical analysis:

The intraclass correlation

Background CRTs Challenges

Dias

Pragmatism

Statistical analysis Small-sample

Small-sample The ICC

Small sample size

3 main approaches to analyse CRTs: cluster-level analyses, mixed-models or GEEs

When only few clusters are randomised: **inflated type I error rate** for mixed-models and GEEs

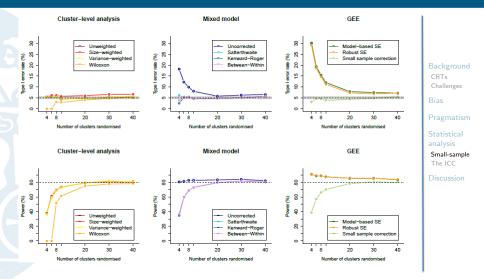
Small-sample corrections available in standard software packages but:

- Not often implemented in practice¹
- Negative impact on power

¹Kahan *et al.* Increased risk of type I errors in cluster randomised trials with small or medium numbers of clusters: a review, reanalysis, and simulation study. Trials. 2016 Sep 6;17(1):438.

March 28th, 2017

CRTs Challenges Bias



The ICC

Small sample size

The ICC: an outcome?

The variation of the ICC could be useful in providing information about the **heterogeneity of the intervention effect**

⇒ Should this difference be **reported** along with the outcome?

For binary outcomes, the ICC depends on the prevalence \implies Difficult to interpret if there is a positive intervention effect

Ongoing work on the **rescaling of binary ICCs** to make them independent of the prevalence

Background CRTs Challenges Bias Pragmatism Statistical analysis Small-sample The ICC

...

March 28th, 2017

16/16

Discussion

Challenges in the design and analysis of CRTs not encountered in IRTs:

- Risk of selection bias
- Correlation in the data

However, the conclusions from CRTs are **similar** to those from IRTs whilst avoiding limitations in the implementation of IRTs

A lot of unresolved questions...

Background CRTs Challenges Bias Pragmatism Statistical analysis

Small-sample The ICC

Acknowledgements

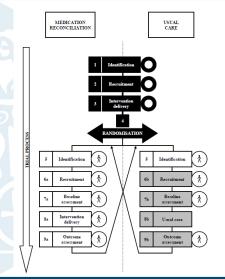
Agnès Caille Bruno Giraudeau Elsa Tavernier

Sandra Eldridge Brennan Kahan Sally Kerry

Baptiste Leurent Katy Morgan

Allan Donner

Institut national de la santé et de la recherche médicale



Timeline cluster (2)

Cluster cross-over trial Clusters: hospital wards Intervention: medication reconciliation Outcome: drug-related problem

Recruitment bias X Performance bias X Detection bias X

Rescaling the ICC

Ongoing work on the **rescaling of binary ICCs** to make them independent of the prevalence

Arm	Prevalence (%)	Binary ICC	Continuous ICC
Malathion	85.0	0.44	0.74
Ivermectine	95.2	0.61	0.95