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Rationale 

• Multilevel growth models are commonly used to assess 
determinants of growth/change or the relationships of 
growth/change with an outcome 

• Less often used to examine relationships between 
changes in two or more variables 

• May hypothesise that change in one variable may cause 
a change in another 

• Difficult to derive and interpret associations between 
non-linear patterns of change and assess whether 
change in one variable precedes change in the other 

 



Cross-lagged structural equation model 

• Useful for investigating temporal associations – does the 

value of variable X at time t1 influence the value of 

variable Y at time t2?  

 

Y1 Y2 Y3 

X1 X2 X3 



Cross-lagged SEM 

• Granger causality (Granger, 1969) – conditional on 

earlier observations of Y, do earlier observations of X 

(and the current observation of X) predict the current 

observation of Y? 
 

Cross-lagged SEM works well when: 

• Repeated measurements are made at the same time 

points for each individual 

• There is a small number of measurement occasions – 

otherwise many paths to estimate 

• Interested in associations between absolute values of 

the variables at different time points 

 



What if… 

• Different numbers and timings of repeated measurements for 

different individuals? eg. routine data 

• Large number of possible measurement times and it is not 

clear how to select important time points to include in the 

model? 

• Repeated measurements are highly correlated and there are 

collinearity problems when examining associations between 

these? 

• We are most interested in associations between rates of 

change in two variables, rather than their absolute values?  

    eg. how is a unit increase in X between times t1 and t2 

    associated with change in Y between times t2 and t3 



Relating change in two variables 

Change in 

Y between 

t1 and t2 

Change in 

Y between 

t2 and t3 

Value of Y 

at t1 

(baseline) 

Value of X 

at t1 

(baseline) 

Change in 

X between 

t1 and t2 

Change in 

X between 

t2 and t3 

Use a multilevel model to derive these parameters and a 

data-driven approach to selecting the time points t1, t2, etc. 



Example: weight gain and mean arterial 

pressure change in pregnancy 
 

• Greater gestational weight gain (GWG) is associated 

with a higher risk of developing a hypertensive disorder 

of pregnancy: gestational hypertension and pre-

eclampsia 
 

• Reverse causality?  

 Pre-eclampsia is associated with increased oedema 

        greater weight gain 
 

• Do changes in weight precede changes in blood 

pressure or vice versa? 

 



ALSPAC 

• 14,541 women living in Avon, UK with expected delivery 

dates between April 1991 and December 1992 recruited 
 

• Routine antenatal BP (median 14 per woman) and 

weight (median 12 per woman) measurements 

abstracted from obstetric records 
 

• MAP calculated as (SBP + 2 x DBP)/3 
 

• Included 11,650 women who had a live term birth and 

did not develop pre-eclampsia or have previous 

hypertension 
 

 

 

 



Linear splines 

• Linear pattern of change 

    between knot points 

 

• For a model with m linear splines, with earliest observation at 

time t0, latest observation at time tm, and m-1 knots at times, 

t1< t2< …< tm-1, the linear splines, sl, are defined as: 
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Multilevel linear spline model 
A two-level univariate linear spline model for an outcome y, with 

measurements, j=1,…,J, within individuals, k=1,…,K, 

which has m linear splines, sl for l=1,…,m, is defined as: 
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Now have a three-level model, with measurements, (i)=1,2, within 

measurement occasions, j=1,…,J, within individuals, k=1,…,K. 

       for i=1,2 

 

Bivariate multilevel linear spline model 
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Knot point selection for weight and MAP 

• Fitted fractional polynomial curves – “eyeballed” approximate 

change points 

• Compared log-likelihood of different 2 and 3 knot models with 

knot points varied around these values 

• For models with high log-likelihoods, calculated mean 

difference between observed and predicted values for each 4-

week period of gestation and averaged this 

• Knot points of best-fitting models were at: 

• 18 and 28 weeks gestation for weight 

• 18, 30 and 36 weeks gestation for MAP 

• For simplicity used knot points of 18 and 29 weeks for weight 

and 18, 29 and 36 weeks for MAP in the bivariate model 

 



Multilevel linear spline models for 

weight and MAP 

Weight MAP 



Hypothesis testing 

• Fit series of nested models with different sets of 

covariances between the individual-level random effects 

constrained to be 0 
 

• Compare the fit using likelihood ratio tests (null 

hypothesis that the constrained model fits the data as 

well as the unconstrained model) 
 

• Sets of constraints chosen so that a particular 

hypothesis about the relationships between changes in 

each of the variables can be tested 



Hypothesis 1: Changes in the two variables are 

only correlated in the same and adjacent time 

periods 

• Constrain covariances between random effects relating 

to changes in the two variables in non-adjacent time 

periods to be 0 
 

• Compare the fit of the model to that of the full model with 

these covariances freely estimated 
 

• Simplifies the model if the null hypothesis is not rejected  
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Hypothesis 1: Constrained model 

X indicates a freely estimated parameter; 0 indicates a parameter constrained to 0  



Hypothesis 2: Change in variable 1 precedes 

change in variable 2 (and not vice versa) 

• For each period of change in variable 2, constrain random 

effect covariances with changes in variable 1 in all 

subsequent time periods to be 0 
 

• Compare the fit of the model to that of the full model with 

these covariances freely estimated 
 

• May obtain some indication of the direction (if any) of 

causality 
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Hypothesis 2: Weight change precedes 

MAP change constrained model 



Weight MAP 
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Hypothesis 2: MAP change precedes 

weight change constrained model 



Hypothesis 3: There is a lag time between 

change in variable 1 and change in variable 2 

• Constrain covariances between random effects relating to 

change in variable 1 and change in variable 2 in the 

immediately subsequent time period(s) to be 0 
 

• Allow covariances of change in variable 1 with change in 

variable 2 in later time periods (after the lag time) to be freely 

estimated 
 

• Compare the model fit with that of the full model  
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Hypothesis 3: Possible constrained model 



Hypothesis testing in GWG and MAP 

example 

Model Deviance Difference in 

df compared 

with Model 1 

P-value 

Model 1: Full model 984212.0 

Model 2: Changes in weight and MAP 

are only associated in the same and 

adjacent periods of gestation 

984277.6 8 <0.001 

Model 3: Weight change precedes 

MAP change 

984241.5 3 <0.001 

Model 4: MAP change precedes 

weight change 

984235.5 5 <0.001 



Deriving regression coefficients for change in 

one variable on change in another 
• Eg. Is rate of change in variable 1 in time period 1 associated with 

rate of change in variable 2 in time period 2? 

Correlation =  

 

        =  

 

Regression coefficient (rate of change in variable 2 in period 2 

regressed on rate of change in variable 1 in period 1) 
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• The regression coefficient formula in the previous slide may 

be extended to produce adjusted regression coefficients eg. 

adjusted for baseline values or change in earlier periods of 

time 
 

• Again uses estimates of the variances and covariances of the 

random effects from the multilevel model 
 

• Likely that baseline values will be associated with later 

change in each of the variables and can adjust for 

confounding by baseline values in the estimate of the 

association between change in one variable and change in 

the other 

 

Adjusting for baseline values 



The regression coefficient for the rate of change in variable 2 in time 

period 2 regressed on the rate of change in variable 1 in time period 

1, adjusted for the baseline value of variable 1 is: 
 

var(variable 1 at baseline) x 

   cov(slope of variable 1 in period 1, slope of variable 2 in period 2) 

- cov(variable 1 at baseline, slope of variable 1 in period 1) x 

     cov(variable 1 at baseline, slope of variable 2 in period 2) 

 

var(variable 1 at baseline) var(slope of variable 1 in period 1) 

  - cov(variable 1 at baseline, slope of variable 1 in period 1)2 

 

=  

Adjusting for baseline values 
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Adjusted regression coefficients from variance-

covariance matrix of random effects 

In general, to regress one random effect,        , on p other 

random effects,                          .  

    β = Σ-1σ0  

 

where  β                          , the vector of regression 

coefficients relating to                              respectively,  

σ0          and                                          
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Deriving standard errors for regression 

coefficients 

• Regressing random effects relating to change in one period 

on random effects relating to change in another, but random 

effects have not been directly observed 
 

• Variances and covariances of the random effects have been 

estimated by the model – uncertainty associated with these 

estimates 
 

• We compared three different methods for deriving standard 

errors for the regression coefficients on the GWG and MAP 

change data 



Deriving standard errors of regression 

coefficients 

• Method 1: SE for regression coefficients obtained from a 

random sample 

 

Let SEβ =        . Then, 

   SEβ = 

 

with β and σ0 as before and          . 
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Deriving standard errors of regression 

coefficients 

• Method 2: Use the delta method to calculate the 

standard errors 
 

• Method of deriving standard errors for non-linear 

combinations of parameter estimates 

• Eg. for an unadjusted regression coefficient: 

  

 

• Requires that the formula for the regression coefficient is 

defined explicitly – only appropriate for up to 4 independent 

variables 
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Deriving standard errors of regression 

coefficients 

• Method 3: Simulating from the distribution of the random 

effects variance-covariance matrix 
 

• Generate a large number, N, of realisations of the variance-

covariance matrix of random effects using a multivariate 

normal distribution based on the estimates from the multilevel 

model 
 

• Derive the regression coefficient within each of these N 

simulated matrices and use the 2.5th and 97.5th percentiles of 

the distribution of the regression coefficients over all of the 

realisations as the lower and upper 95% confidence interval 

limits 
 

 



Comparison of SE methods 

Exposure: 

Weight 

change 8-18 

weeks 

Outcome: MAP change  

8-18 weeks 

Outcome: MAP change  

18-29 weeks 

Mean diff 95% confidence 

interval 

Mean diff 95% confidence 

interval 

Method 1 0.011 (-0.004, 0.026) 0.095 (0.083, 0.106) 

Method 2 0.011 (-0.046, 0.068) 0.095 (0.055, 0.134) 

Method 3 0.011 (-0.046, 0.068) 0.094 (0.054, 0.134) 

Method 1 0.031 (0.017, 0.045) 0.079 (0.067, 0.091) 

Method 2 0.031 (-0.015, 0.077) 0.079 (0.038, 0.120) 

Method 3 0.031 (-0.015, 0.076) 0.079 (0.038, 0.120) 

Associations of weight change up to 18 weeks with MAP changes (per 

400g/week weight gain) 

shaded cells are regression coefficients adjusted for baseline values of weight and MAP 



Comparison of SE methods 

• In general Method 1 underestimated the standard errors – 

does not take into account the uncertainty in the estimates of 

the variances and covariances of the random effects 
 

• Delta method (Method 2) takes into account the uncertainty in 

the parameter estimates and simulation method (Method 3) 

produced comparable CIs 
 

• Methods 2 and 3 implemented in the REFFADJUST package 

in Stata (Palmer et al, 2012):  

http://ideas.repec.org/c/boc/bocode/s457403.html 

• Implements delta method for up to 4 independent variables 

and simulation method for any number of variables 

 

http://ideas.repec.org/c/boc/bocode/s457403.html


Weight 

variable 

(exposure) 

MAP change  

8-18 weeks 

(mmHg/wk) 

MAP change  

18-29 weeks 

(mmHg/wk) 

MAP change 

29-36 weeks 

(mmHg/wk) 

MAP change 

36+ weeks 

(mmHg/wk) 

Weight change 

8-18 wks 

(400g/wk) 

0.03 

(-0.02, 0.08) 

0.08 

(0.04, 0.12) 

-0.09 

(-0.16, -0.03) 

0.00 

(-0.12, 0.13) 

Weight change 

18-29 wks 

(400g/wk) 

0.11 

(0.07, 0.15) 

0.05 

(-0.03, 0.13) 

0.06 

(-0.09, 0.21) 

Weight change 

29+ wks 

(400g/wk) 

0.27 

(0.20, 0.33) 

0.29 

(0.15, 0.43) 

Adjusted for maternal height, age, parity, smoking, education and offspring sex 

and also for weight and MAP at 8 weeks (baseline) and weight and MAP changes 

prior to the exposure period 

 

Mean differences (95% confidence interval) in MAP change in each period 

associated with a 400g/week increase in weight change 

Associations of GWG with concurrent and 

subsequent MAP change 



MAP variable 

(exposure) 

Weight change  

18-29 weeks 

(400g/wk) 

Weight change 

29+ weeks 

(400g/wk) 

MAP change 8-18 

weeks (mmHg/wk) 

0.07  

(-0.01, 0.15) 

0.09 

(0.00, 0.18) 

MAP change 18-29 

weeks (mmHg/wk) 

0.03  

(-0.06, 0.12) 

Adjusted for maternal height, age, parity, smoking, education and offspring sex 

and also for weight and MAP at 8 weeks, weight and MAP change prior to the 

exposure period and weight change in the exposure period 

 

Mean differences (95% confidence interval) in weight change in each 

period associated with a mmHg/week increase in MAP change 

Associations of MAP change with 

subsequent weight change 



GWG and MAP - findings 

• Greater weight gain in early pregnancy associated with a 

greater rise in MAP in mid-pregnancy, but a smaller rise 

in late pregnancy 

 

• Weight gain in mid and late pregnancy positively 

associated with the concurrent rise in MAP 
 

• Also some evidence that MAP change in early 

pregnancy is positively associated with weight gain in 

mid and late pregnancy 

 

 



Comparison with SEM 

• A number of papers have demonstrated the equivalence 

of multilevel and structural equation models (Curran 

(2003), Bauer (2003)) 
 

• Straight forward to fit a multilevel model in an SEM 

framework for balanced data 
 

• Data with different numbers and timings of 

measurements for each individual may also be fit in an 

SEM framework by defining timepoints and treating 

timepoints where observations were not taken as 

missing data for that individual (Steele, 2008). 



Bivariate linear spline model as an SEM 

• Define growth factors f0
(1) , f1

(1),..., fm(1)
(1) for the intercept 

and rates of change in each period of gestation for 

variable 1 and growth factors f0
(2) , f1

(2),..., fm(2)
(2) for 

variable 2 
 

• The loadings of variable 1 and variable 2 at each time 

pointon each of the growth factors are fixed (as shown 

on next slide) 
 

• Variances and covariances estimated for each of the 

growth factors, as for the random effects in a multilevel 

model – also growth factor means estimated (similar to 

fixed effects in a multilevel model) 



Bivariate linear spline model as an SEM 
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GWG and MAP model as an SEM 

• Rounded measurements to the nearest week of 

gestation – 43 measurement occasions, from 2 to 44 

weeks 
 

• Weeks of gestation where a measurement was not 

observed were treated as having missing data and 

maximum likelihood estimation used 
 

• Estimates of means, variances and covariances of the 

growth factors from the SEM were equivalent to the 

nearest ~3 sf to those of the fixed and random effects 

from the multilevel model 

 

 



Comparison of MLM and SEM 

approaches 

 

 

• SEM approach more complicated data management task 

and more computationally intensive than MLM approach 

when there are varying numbers and timings of 

observations 
 

• More flexibility in SEM framework to include different 

pathways between variables, eg. path analysis and to 

extend the model to include latent variables eg. growth 

mixture model 
 

• Wider range of model fit statistics generally available in 

SEM software than MLM software  

 

 



Discussion 

Decision on the number of splines to include and 

positioning of knot points: 

• Data driven – select knot points which have best fit to 

the data 

• Interpretability – relating meaningful periods of 

change in the regression models to answer the 

research question 

• Sample size – may have convergence problems if try 

to fit too many splines without sufficient data 

 

 



Discussion 

Extensions: 

• Could potentially extend the model to include 

categorical outcomes – assumptions of normality 

may be stretched 
 

• Include more than two outcomes – multivariate model 
 

• Regression coefficients for associations between 

periods of change in the two variables may be 

adjusted for periods of change between the exposure 

and outcome period to assess mediation 

 

 



Discussion 

Assumptions: 

• Missing at random – both multilevel and structural 

equation models assume that whether a measurement is 

observed at a particular time point does not depend on its 

value at that time. Any reasons for missingness are 

explained by measurements we have observed or 

covariates 

• Normality – the delta and simulation methods of deriving 

standard errors for regression coefficients both assume 

that the variances and covariances of the random effects 

are normally distributed. This approximation is only 

justified in large samples 

 

 

 



Conclusions 

• The method is useful for determining whether changes in 

one variable are associated with changes in another, 

particularly when the pattern of change is nonlinear or it is 

of interest which particular periods of change are 

associated 
 

• May provide evidence towards a causal influence of 

change in one variable on change in another by showing 

an association with change in a subsequent time period 
 

• Could also be used when the changes do not occur in 

parallel, eg. relating maternal blood pressure changes in 

pregnancy to offspring blood pressure change in 

childhood 
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