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Summary 

Statistical aspects of causality are reviewed in simple form and the impact of recent work discussed. 

Three distinct notions of causality are set out and implications for densities and for linear dependencies 

explained. The importance of appreciating the possibility of effect modifiers is stressed, be they intermedi 

ate variables, background variables or unobserved confounders. In many contexts the issue of unobserved 

confounders is salient. The difficulties of interpretation when there are joint effects are discussed and 

possible modifications of analysis explained. The dangers of uncritical conditioning and marginalization 
over intermediate response variables are set out and some of the problems of generalizing conclusions 

to populations and individuals explained. In general terms the importance of search for possibly causal 

variables is stressed but the need for caution is emphasized. 
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confounder. 

1 Introduction 

Statisticians concerned with the interpretation of their analyses have implicitly always been inter 

ested in causality even if they have been sparing in the use of the word. Thus Yule (1900) emphasized, 

especially in a time series context, the distinction between correlation and causation. Fisher (1926, 

1935) showed that randomization could yield causal inference about treatment effects in which 

uncertainty could be assessed probabilistically on the basis of the randomization without special 
assumptions about the structure of the uncontrolled variation. 

Cochran (1965) gave a penetrating discussion of many aspects of the analysis of observational 
studies and in particular pointed to the need to extend Sewall Wright's path analysis to address issues 
of possible causality, thus anticipating the thrust of much recent work. In addition Cochran quoted 
Fisher's reply to a question that Cochran had asked him about how to make observational studies 
more likely to yield causal answers: the answer was "Make your theories elaborate". This might be 

achieved in various ways, for example by assembling evidence of different types or by obtaining 
somewhat similar evidence under a wide range of conditions. 

Hill (1965) gave guidelines. Satisfaction of some or all of them would strengthen the case for 

causality inferred from observational studies; he did not state explicitly what he meant by the term 

causal, although it seems very likely that it was what is termed below first-level causality. Although 
formulated in an epidemiological context his guidelines are widely relevant. He emphasized that 

they were indeed guidelines not criteria. 

Box (1966) stressed the care needed in giving in effect a causal interpretation to regression equa 
tions fitted to observational data. While his illustration was set in a chemical engineering context the 

argument was again of broad applicability. 
Rubin (1974), in an influential paper, adapted notions of causality from the design of experiments 

to observational studies via a representation similar to Fisher's which, without the essential element 
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of physical randomization, had been given by Neyman (1923). Subsequently Rubin developed and 

applied these ideas notably in social science contexts. His and much other previous work is best 

approached through the review paper of Holland (1986). 
Cox & Snell (1981, pp. 84, 85), in an elementary account of regression, outlined five different 

interpretations of regression equations and coefficients. One was to examine the effect of imposed 

changes in one or more variables and the care needed, especially in observational studies, in speci 

fying what is held fixed under the imposed changes was emphasized. 
Robins, in a long series of papers, in effect explores notions of causality in a clinical trial and 

epidemiological setting. For problems where treatments or interventions are applied in sequence, 
see, for example, Robins (1997) and in more detail van der Laan & Robins (2002). 

Rosenbaum (2002) has given a searching discussion of the conceptual and methodological issues 

involved in the analysis of observational studies. 

The above work can be regarded as in a main-stream statistical tradition. In this the central idea is 

that of regression analysis, taken in a very general sense as meaning the study of the dependence of 
one or more response variables on explanatory variables. The key issues are broadly as follows: 

to choose an appropriate general form of regression relation 

to determine which explanatory variables can legitimately be included in the relation additional 

to those that have a potentially causal interpretation 
to examine possible nonlinear and interactive effects that may be central to correct interpreta 
tion 

to combine evidence from several studies. 

There are some situations where causality is clear. The effect may be large and the consequence 
of a major perturbation of the system or may be firmly related to long and broad experience or to 

well-established theory. Our discussion, however, is largely focused on situations where establishing 

causality is more delicate, either because the effect under study is small or because of the possibility 
of competing explanations of the data. Freedman (2003) has warned against overinterpretation of 

statistical analyses, giving examples especially from epidemiology and sociology; see also Dempster 
(1988). Doll (2002) has emphasized that causality can be inferred from empirical epidemiological 
studies but that considerable care is needed if the effect is only a modest one. 

There are many examples where successful search for a causal effect has involved a chain of 

studies of different types. It might start with the observation of several unusual events, followed by 

retrospective and prospective studies and evidence from other sources, for example animal studies 

in a human health context. One prominent example concerns a particular malformation of the eye. It 

was first noted by an Australian physician (Gregg, 1941) as a common feature of several newborns 

with this malformation that the mothers had been in early pregnancy during the height of a rubella 

epidemic. It took a large number of additional studies to establish that the malformation can only 
occur if the mother had not been exposed to rubella before the pregnancy and then only if she had 

been in contact with rubella during the first three months of pregnancy. Major reports, in particular 
on health issues, such as that of the U.S. Surgeon-General (U.S. Department of Health, Education 

and Welfare, 1964) concluding that smoking is a cause of lung cancer, are typically based on a wide 

range of evidence. 

Deterministic notions of causality have a long history. More probabilistic notions of causality have 

received much recent attention in the philosophical and computer science literature on knowledge 
and belief systems and in particular there is both the important early work of Spirtes et al. (1993), 
for a review of which see, for example, Schemes (1997), and a book by Pearl (2000) summarizing 
and extending his earlier work. This work is in a sense more formalized than most of the statistical 

ideas summarised above and one of the aims of the present paper is to examine the relation between 

the two strands of work; see especially Section 4.2. 
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2 Some Definitions 

We now sketch three different notions of causality. It is important to distinguish causality as a 

property of the physical or biological or social world from its representation in statistical models. We 

aim for statistical models that permit interpretations in the former sense; to call such models causal 

models is, however, potentially misleading. 
We start with a view of causality, to be called here zero-level causality, and used often in the 

statistical literature. This is a statistical association, i.e. non-independence, with clearly established 

ordering from cause to response and which cannot be removed by conditioning on allowable alter 

native features. A crucial aspect concerns the term allowable. For example, in assessing the possible 
causal effect of an intervention on the occurrence of a cardiac event, blood pressure three months 

after starting treatment would not be an allowable conditioning feature because it itself may be 

affected by the intervention under study. 
What is termed here the zero-level view of causality was studied by Good (1961, 1962) and 

comprehensively developed by Suppes (1970) and in a time-series context by Granger (1969) and in 
a more general stochastic process formulation by Schweder (1970) and by Aalen (1987). 

We next introduce a different formulation, to be called first-level causality. This broad approach 
seems most immediately relevant in many applications of concern to statisticians. 

For this, faced with two or more possible interventions in a system, we may aim to compare 
the outcomes that would arise under the different interventions. For example, consider two possible 

medical interventions, C\ and Co, a new treatment and a control, only one of which can be used on 

a particular patient. We aim to compare the outcome observed, say with C\. with the outcome that 

would have been observed on that patient had Co been used, other things being equal. Evidence of a 

systematic difference would be evidence that use of C\ rather than Co causes a change in outcome. 

This viewpoint may have a decision-making objective although this is by no means necessary. For 

example, when considering whether an anomalous gene causes some disease, the intervention as 

between the abnormal and normal version of the gene is hypothetical and moreover no immediate 

decision-making process is typically involved. This definition of causality is explicitly comparative. 
One of the delicate aspects of this formulation is that it is most immediately formulated as con 

cerning individuals but its verification and often its real meaning involve aggregate or statistical 

issues, i.e. involve average effects over some set of individuals. In that case explicit specification of 
a reference population of individuals may be important. 

Finally we introduce what we name second-level causality. In a scientific context suppose that 

careful design and analysis have established a pattern of dependencies or associations or have pro 

vided reasonable evidence of first- or zero-level causality. The question then arises of explaining 
how these dependencies or associations arose. What underlying generating process was involved, i.e. 

what is underlying the structure observed? Often this will involve incorporating information from 

many different sources, for example in a physical science context establishing connections with basic 

principles of classical or quantum physics and perhaps between observational and laboratory-scale 
observations. Goldthorpe (1998) has argued for such a broad notion of causality also in sociology 
and Hoover (2002) in macroeconomics. A methodological distinction between epidemiological and 

sociological research is that in the former the possible causal effect of specific risk factors is often 
of concern as a potential base for public health recommendations. In sociological work interest may 
often lie in the whole process linking say parental socio-economic class and individual life-features. 

In all fields, explanations via a generating process are inevitably to some extent provisional and the 

process hardly lends itself to very formal characterization. In this view it is important to distinguish 
between different types of explanation. Some are merely hypothesized, and these can be a valuable 

preliminary and a source of stimulating research questions. Others are reasonably solidly evidence 
based. Moreover some such evidence-based explanations are formulated before the examination of 

some data to be analysed, whereas others may be retrospectively constructed in the light of that 
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analysis. The former are typically more immediately convincing and the latter will often call for 

independent confirmation. This view of causality does not imply a notion of ultimate causation; any 

proposed generating process may itself have a further explanation at some deeper level. 
Use of terms varies substantially between individuals and fields. Nevertheless the notion of 

evidence-based process seems to correspond broadly but not exclusively to usage in the natural 
sciences. The first-level notion seems, however, to be most frequently involved in statistical work, 

especially in such fields as epidemiology with a relatively applied focus. For further discussion of 
these distinctions, see, for example, Cox (1992), Holland (1986) and Cox & Wermuth (1996, pp. 
219-227). 

Because of the need for care in interpretation, it is often convenient to use the following termi 

nology. We call C a candidate cause if it makes sense in the context in question to consider C as a 

possible cause of R, for example in the sense of level-one causality. We call C a potential cause if 

there is evidence of a possibly causal effect, for example that the notional responses to alternative 

levels, for example C\ and Co, are systematically different. We omit the qualification potential when 

the evidence is convincing that there is no alternative explanation, and especially when the develop 
mental process is well understood. We use this cautious approach not to discourage the search for 

causality, but rather to rule out the possibility that real associations can be deemed causal merely by 

naming them so. 

A referee has pointed out a possible connection with the notions of Suppes (1970) of prima facie, 

genuine and spurious causes. The first of these corresponds broadly to what we have called possible 
and potential causes. The third of Suppes's types deals with variables whose possible causal effect 

is explained via other allowable variables. 

Many of the essential points in the paper are concerned with putting into perspective the three 

different views of causality outlined above and with showing them in a framework of probability 
models. For this it is for most purposes enough to consider a system with four variables measured 

on each individual, a response R, an intermediate variable /, the potential causal variable C and a 

background variable B\ see Figure 1 for a graphical representation in which we suppose each of the 

four variables to have two components. 

R-l H C<| B-| 

F*2 >2 c2 B2 

Primary Intermediate Potential Background 
responses variables causes variables 

Figure 1. Graphical representation with four types of variable. In statistical analysis the background variables B, shown in 

a double-lined box, would usually be considered conditionally on their observed values. 

The role of / will be discussed later in the paper and will not contribute to the first part of the 

discussion. We have, however, introduced it in the initial formulation because of its conceptual 

importance. A primary role of B is to specify what is held fixed under notional changes of the 

variable C. 

It is assumed that the variables can at the start be arranged so that a joint probability distribution 
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is defined recursively. In a simplified notation for densities we write 

fRICB 
= 

fR\ICBfl\CBfc\BfB- 0) 

To ignore /, i.e. marginalize over it, we integrate (1) over all values / of /. 

3 Level-one Causality 

Level-one causality (Rubin, 1974) involves for the simple situation of Section 2 the idea that 

for each individual there are two notional responses R\ and Ro depending on whether C\ or Co is 

used. Only one of these notional responses can be observed and the other thus is in principle not 

observable and therefore called a counterfactual. This formulation is combined with an assumption 
that any difference between R\ and Ro is systematic, in an extreme form that 

R{-R0 = A, (2) 

a constant, i.e. the same for all individuals in the study. 
An important aspect hidden in this definition is that as C notionally changes other relevant aspects 

are fixed; we shall see the more formal expression of this later via the role of background variable B. 
A form equivalent to (2), that of so-called unit-treatment additivity, specifies that if unit of study 

s receives C/ for / = 0, 1 the resulting response is 

a,+/A, (3) 

with a direct extension if the potential cause takes more than two possible forms. 
There is the further assumption that the response on unit s does not depend on the assignments of 

C to other units. We shall not address this issue here but clearly there are contexts where this consid 
eration either dictates the size and nature of the appropriate unit of study or requires elaboration of 

(2) and (3) and the resulting statistical analysis. Thus in an agricultural fertiliser trial if the plot size 
were too small, quite apart from technical difficulties in implementation and harvesting, fertiliser 

might diffuse from one plot to another and make the yield on one plot depend in part on the treatment 

applied to an adjacent plot. 
Note that the formulation (2) and (3), which is directly adapted from one used in the theory 

of experimental design, is put deterministically at an individual level. We discuss later a different 
formulation in which a population of individuals is involved and a stochastic element enters. 

The assumption (2) is misleading even in an average sense if, for example, there are two different 

types of individual responding very differently to the causal variable C. For instance a blood-thinning 
agent used in the treatment of stroke could be beneficial to some patients and fatal to others, depend 
ing on the nature of the stroke. 

Use of counterfactuals has been criticized by Dawid (2000) and defended in the resulting discus 
sion. It is clear that (2) and (3) can be tested only indirectly via the stability of estimated differences, 
i.e. by the absence of interaction with meaningful features of the individuals. Further the parameter 

A can be directly estimated only as an average rather than as an individual effect. For some purposes, 

however, the individual interpretation of (2) is helpful. 
This is not the place for an extended discussion of the role of counterfactuals. While it is clearly 

important that crucial assumptions in a statistical argument are not merely capable of being tested in 

principle but are subject to adequate test, there seems ample evidence that assumptions and formu 
lations open at best to indirect test can be helpful aids to concept formulation and interpretation. 

In some contexts (2) and (3) would be better formulated by regarding any causal effect as operating 
proportionally, or equivalently by taking (2) on a log scale. 

The null hypothesis that there is no causal effect takes in this formulation the very strong form 
that the response observed on any individual is totally unaffected by the choices about Co and C\. In 
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randomized experiments this leads to a test based solely on the randomization. For binary data, this 

is the exact hypergeometric test for a 2 x 2 table. The form (2) cannot in the nonnull case apply to 

binary responses and then estimation via randomization theory of the magnitude of an effect is more 

complicated; see Copas (1973). 
We return to the issue of the individual versus the aggregate definition in Section 8.2. 

4 Some Recent Work on Causality 

4.1 Preliminary Results 

We now review some recent work on statistical aspects of causality, especially stemming from 

that of Pearl (2000). 
That work comes from a different background from that of most statisticians. There are, however, 

three accounts of it from a more statistical position. Lauritzen (2000) has placed Pearl's work in 

the context of the theory of graphical models in the form given in his book (Lauritzen, 1996). 

Lindley (2002) has reviewed Pearl's book and given a lucid account of some essential ideas and 

made important comments. Finally Dawid (2002) has reformulated the discussion using influence 

diagrams. 

We first repeat two of Lindley's comments. The value of Pearl's formulation does not depend 
on the particular view of probability taken. Thus while much is formulated in terms of probability 
as assessing judgement or knowledge, the discussion is equally relevant to those concerned with 

probability as representing say physical or biological processes. Secondly, while Pearl's results 

do establish conditions under which first level causal conclusions are possible, checking of these 

conditions may be difficult; there is no suggestion that Pearl would disagree. 

4.2 Conditioning and Intervening 

A central theme in Pearl's discussion is the distinction between conditioning on C and setting or 

intervening on C. We start with the joint distribution of R, C, B, having integrated out /, taking it in 

the recursive form 

fRCB 
= 

fR\CBfc\BfB- (4) 

In graphical representations of these systems, conditional independencies are represented by 

missing edges. In particular, absence of an effect of a potential cause C on a response R given 
B would be represented by a missing edge between C and R\ see Figure 2b. A key issue in the 

formulation (4) is the assumption that the variables can on a priori grounds be placed in order so 

that each variable is a response to the subsequent variables in the sequence. 

C C C 

(a) (b) (c) 

Figure 2. (a) Graphical representation of general dependence of R on C and B and ofConB in initial system, (b) Absence 

of effect of C on R given B shown by missing edge, implying RALC | B. (c) Modified system with explanatory variables 

acting independently shown as the missing edge between B and C. 
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Conditioning in Pearl's sense is the standard conditioning calculation in (4), given only that C ? c. 

We consider the resulting conditional distribution of R having marginalized over B. That is, 

fR\c 
= 

I fR\CB.fB\cdb, (5) 

where fB\c 
= fcBlfc- It would be appropriate to use fR\c for constructing an empirical prediction 

of R given only C = c. It corresponds to the total regression of R on C omitting B, i.e. allowing B 
to change with c in accordance with its conditional distribution given C = c. 

To represent the effect of a notional or actual intervention to set C = c in a system in which 
the directions of dependency in (4) are meaningful and thus can only act in one direction, we must 

express the notion that intervening on C has no backward effect on B, i.e. the value of B is unchanged 
and hence the distribution of B after the intervention remains fB. That is, in (5) fs\c is replaced by 
fB\ see Figure 2c. This in general defines a different distribution for R having intervened to make 
C = c and various notations are in use to describe this. Lauritzen (2000) used 11 to replace the usual 

conditioning sign, leading to 

/r\\c = / fR\CBfBdb. (6) 

This is Pearl's definition of a causal effect, interest focusing on how this distribution changes with c, 

having marginalized over B. The relation of this to the counterfactual notion involved in level-one 

causality is as follows. An individual has a given value C = c and level-one causality concerns how 
R would change if c were to change by intervention. 

The distinction between the two probability distributions fR\C and fR\\c is crucial to the discussion. 
The former in (5) may sometimes have a useful interpretation but is inappropriate for examining 
the effect of intervention on C in that unrealistic changes in B are involved, i.e. changes in the past 
before the intervention. 

In both (5) and (6) it is assumed that the conditional distribution of R and / given C and B remains 
unaffected by the intervention. This is not a trivial assumption. For example, the idea that serious 
interventions may distort all the relations in an economic system is the essence of the Lucas critique 
in econometric theory (Lucas, 1976). 

Dawid (2002) introduces a unifying synthesis in which there is an augmented variable C*, a 
decision node, with a directed edge only to C and which indicates whether conditioning (Figure 
2a) or intervention (Figure 2c) is involved for computing an effect of C on R marginalizing over 
B. An advantage of this new formulation is that the usual properties of directed acyclic graphs 

apply in both cases. Dawid also shows the possibility of representing counterfactuals via functional 
relations involving error random variables represented by additional nodes and stresses, in effect, 

the impossibility of distinguishing an individual level version of (2) and (3) from an aggregate or 

population level form. 
For a wide-ranging series of papers on causality, see McKim & Turner (1997). 

4.3 The Linear Case 

The representation in Section 4.2 has been framed for general distributions and centres on notions 
of statistical dependence and independence. It is, however, useful to set out the corresponding 
discussion for linear systems. These are formed from linear least squares regression equations, that is 

equations in which a response variable is expressed as a linear combination of explanatory variables 

plus a residual term of zero mean uncorrected with the relevant explanatory variables. Such a 
relation is always possible subject to the existence of variances but its statistical relevance depends 
on nonlinearities being relatively unimportant. 

Thus with just three variables, R,C, B, measured as deviations from their means, we may write, 
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corresponding to Figure 2a, 

R = Prc.bC-\- Prb.cB+ r, 
C= PcbB+ C, 
B= B. 

Here, for example, Prc.b denotes the least squares linear regression coefficient of R on C adjusting 
for B, whereas pRB would denote the regression coefficient of R on B marginalizing over, i.e. 

ignoring, C. This is easily calculated by substitution of the second equation into the first, noting that 

the resulting equation is indeed a linear least squares relation and hence giving (Cochran, 1938) 

Prb = Prc.b Pcb + Prb.c- (7) 

Similarly 

Prc = Prc.b + Prb.cPbc- (8) 

A conditional independence statement such as RALC | B in the general formulation of Section 

4.2 corresponds in the linear theory to Prc.b = 0 and CALB corresponds to Pcb = 0 = pBC. For 

multivariate Gaussian distributions this implies conditional independence. In general it implies the 

weaker property of no relation detectable by analysis linear in the relevant variables. 

Thus in the linear case (5) corresponds to computing the overall regression coefficient of R on 

C marginalizing over B, referring to the graph in Figure 2a. On the other hand (6) corresponds to 

the overall regression coefficient of R on C in the modified system of Figure 2c in which B has 

been decoupled from C, i.e. B and C are nonadjacent in the graph. Therefore B does not change 
when there is an intervention on C. From equation (8) it follows for pBC = 0 that pRC 

= Prc.b, i.e. 

the partial effect coincides with the overall effect by the assumptions of a notional intervention and 

treatment-unit additivity. 

If by design or otherwise Pcb = 0 there is no difference between the two formulations. That is, 

Prc.b 
= Prc or, in general, if CALB, then fR{c 

= 
fmc 

4.4 Relation with Statistical Practice 

There are strong connections and an important difference between the discussion summarized 

above and mainstream statistical thinking. A concern common to the two fields is about what should 

be regarded as held fixed under hypothetical changes in the cause C. In regression terminology, which 

explanatory variables should be included in any regression equation for R additional to C itself? 

There is no disagreement that for assessment of a potential causal effect of C on R, background 
variables B are to be included, i.e. conditioned on, whereas any variables intermediate between the 

cause C and the response R should be excluded, i.e. marginalized over. 

A major difficulty in many specific applications concerns whether all appropriate background 
variables have been included in B to ensure that the relevant regression coefficient captures the effect 

of C itself, so that the term cause is appropriately applied to C. This issue is distinct from the purely 
statistical uncertainty in estimating the effect from limited data. 

The general discussion in terms of arbitrary densities leaves quite open the special assumptions 
of functional and distributional form that are often so important in serious statistical work. Of more 

general concern, however, is the notion of averaging an effect over the distribution of B. While this 

is sometimes convenient, in general the marginalization is a bad idea, notably because it discourages 

the study of interactions between C and additional features included in B. Such interactions may be 

crucial for interpretation. Also, as will be discussed in Section 8.1, verifying the absence of important 
interactions may give important security in interpretation. 

In summary, marginalizing in (5) deals with the following question: given a probability distribution 
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over a set of variables (estimated from appropriate data) and given only C = c, what can be inferred 

about RI This question is remote from discussion of causality and is relevant in contexts where 

the objective is exclusively empirical prediction and in particular excludes the study of pathways of 

dependence; see Section 5.2. 

Setting or intervention in (6) deals with the issue of estimating the effect of modifying the system 

by imposing a change on C that has no impact on a background variable B in the past and which 

leaves other statistical relations unchanged. The objective is to assess the effect on R of such a change 
in C and thereby to compare the effect of different interventions, i.e. different values of c. This is 

expressed in (6) by B retaining its distribution fB independently of the intervention on C. 

As already noted and as will be discussed further in Section 8.2, marginalizing over B is in general 
unwise and the appropriate distribution for causal interpretation is fR\tB, as a function of both c and 

b, and not //?nc 
The distinctions set out here essentially formalize via the variable or variables B the ideas men 

tioned in Sections 2 and 3 of respectively allowable alternative explanations and of other things being 
equal in connection with zero-level and with first-level causality. When the intermediate variables 
/ are marginalized, it is implicitly assumed that the conditional distribution of R given C, B is not 

changed by intervention except via the implied change in C. Similarly, when background variables 
are marginalized interactions between C and B are ignored. 

5 Intermediate and Surrogate Variables 

5.1 General Discussion 

Up to now variables intermediate between C and R have been ignored; there are, however, a 

number of important roles that they may play, including the following: 

to suggest pathways of development between the potential cause and the response and thereby 
to link with the second-level definition of causality in Section 3 
in further studies or in the presence of missing responses to serve as a surrogate response 
variable 

to monitor the correct application of the intervention 
to record any important unanticipated further effect that occurs between the potential cause 

and the response. 

The first two of these reasons are in a sense the most interesting. Figure 3a shows a general 

dependence and Figures 3b and 3c are special cases of interest. 

5.2 Study of Pathways 

We turn now to second-level causality. As already stated, to find convincing evidence about the 

generating process in general, in line with Fisher's dictum as quoted by Cochran, requires assembly 
of evidence of various kinds. Nevertheless an important first step towards level-two causality may 
often be analysis involving the intermediate variable or variables / which in the previous discussion 
have been marginalized. These may indicate possible pathways between potential causal variables 
C and the response /?, following the original motivation of Sewall Wright's path analysis and, for 

example, its introduction into sociology by Duncan (1975). Detailed interpretation will have the 
limitations of observational studies discussed above but nevertheless may be the primary objective 
of investigation. Even in the simpler discussion of potential causes it may sometimes be dangerous 
to disregard / totally, for this may indicate some unexpected and in a sense unwanted consequence 
of the intervention for which some account needs to be taken. 
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We give a simple outline example. 

Example. Suppose in an agricultural fertiliser trial different levels of C represent different fer 

tilisers, R is the yield of crop and that / is the number of plants per square metre all measured for 

each plot, the last half-way through the growing season. An increased yield might arise from the 

support of an increased number of plants per plot or from an increased yield per plant or from some 

combination of effects. In estimating the effect of C on yield, / would be ignored. The role of / 

is then to point to possible explanation of any fertiliser differences established. The case where the 

effect of C on R can be totally explained via / is shown in Figure 3b. 

^ -^ ^ (a) CTC (b) XTC (c) O c 

Figure 3. (a) General dependence of R on I, C, B. (b) Given B and I, response R depends on C only via I. (c) Variable I 

conditionally independent ofC given B and hence may be treated as an explanatory variable in addition to B when studying 

possible causal dependence of R on C. 

5.3 Surrogate Response 

The possibility of an intermediate variable acting as a surrogate response can arise in two ways and 

raises important fresh issues. In one context, some individuals have missing response variables but 

measured surrogate. In another only the potential surrogate is recorded and its suitability has to be 

judged from background knowledge and previous data. If in the former case the missing responses are 

missing at random and the intermediate variable is measured in a comparable way on all individuals, 

fairly straightforward analysis should usually be possible. Essentially a regression equation in which 

the response is regressed on a surrogate response (and possibly other explanatory variables) can be 

used to predict the missing responses. 

Strong conditions for a surrogate variable Rs, say, to be suitable as a total substitute for R were 

formulated by Prentice (1989). They are equivalent to RALC | RB. The additional requirement that R 

and Rs are not conditionally independent given C, B, i.e. that there is some dependence, hopefully a 

strong one, between real and surrogate responses is implied in every graphical formulation in which 

an edge present corresponds to an association of substantive interest (Wermuth & Lauritzen, 1990). 
For a further discussion of surrogates and related issues, see Frangakis & Rubin (2002) and Lauritzen 

(2003). 
A condition weaker than that of Prentice is that in tracing paths from B, C to R the dependence 

in the relation of Rs to C given B is in the same direction as that when R itself is used instead of Rs 

(Cox, 1999). In terms of linear representations we require that R and Rs are measured in such a way 

that a positive effect of C on Rs implies a positive effect on R and that zero effect on Rs implies 
zero effect on R. In terms of linear representations, we have that 

Prc.b 
= 

Prc.rsb + Prrs.cbPrsc.b 

To preserve a qualitative interpretation we want Prc.b and Prsc.b to have the same sign. Simple 
conditions for this when Prrs.cb > 0 are that Prc.b and Prc.b 

- 
Prc.rsb have the same sign. This 

condition is appreciably weaker and more realistic than requiring RALC \ RsB. 
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A major difficulty with conditions for the appropriateness of surrogates is that the conditions need 

to hold for a broad range of circumstances or to be justified by some evidence-based knowledge of 

process; verification in one set of pilot data would on its own give little security for their future use. 

This means that suggestions of causality for R based in fact on the surrogate Rs are likely to be 

especially tentative unless the pathway from Rs to R is well understood. 

There is a difference of emphasis depending on whether the surrogate variable is of some intrinsic 

interest as compared with situations in which it is of no concern except in its surrogate role. 

Example. In industrial life-testing accelerated testing in extreme environments is commonly used 

as a surrogate assessing reliability in a working context and justified explicitly or implicitly by some 

such proportionality assumptions as that if R and Rs are failure times in natural and accelerated 

modes then Rs 
= 

R/ol, where a is an acceleration factor assumed relatively stable across the various 

situations to be considered, i.e. in particular independent of C. 

In this instance the surrogate variable is likely to be of no intrinsic interest. On the other hand in 
some medical applications, symptomatic improvement may be an intrinsically interesting surrogate 
for longer term response. 

5.4 Other Roles 

In some very limited circumstances it is reasonable to condition on an intermediate variable as if 
it were explanatory, namely if IALC | B; see Figure 3c. That is, / is independent of the potential 
cause given the background information. For example, / might represent some important aspect of 
environment known a priori to be independent of C. Thus in an industrial experiment in which each 

day corresponded to a different experimental unit, the temperature and relative humidity occurring 
on a particular day might very well be treated as independent of C (Cox, 1958, p. 49). 

In a linear representation 

Prcb = Prcbi + Pri.cbPic.b 

and the second term vanishes if Pic.b = 0. 

More generally, the possibility of additional intervention or deviation from the protocol of the 

investigation bears, in particular, on the issue of non-compliance, sometimes called non-adherence, 

in clinical and other trials, i.e. of failure of patients to follow the treatment regime to which they have 
been assigned. In this case / serves a warning that the individual in question may not be informative 
about the effect of C in the way that was originally envisaged. Thus Cox & Wermuth (1996, p. 224) 
describe an only partly apocryphal agricultural trial in which the intermediate variable / was the 

severity of attack by birds. This acted selectively by treatment allocation and to ignore this would 
lead to quite misleading conclusions, judged either scientifically or technologically. 

In general, however, the variables intermediate between C and R should not be included as 

explanatory variables in the primary analysis of the potential causal effect of C on R. 

Example. Violanti (1998) has used police records of traffic accidents in Oklahoma to study the 

possible impact of mobile phones in vehicles on accidents. In one of the studies the occurrence or 
non-occurrence of a fatality was taken as the outcome variable. That is, in effect the paper studied the 

possible impact of a mobile phone on the seriousness of an accident, given that an accident occurred. 
It used logistic regression of the outcome on a considerable number of explanatory variables of which 

presence of a mobile phone was one. Another was a record that a vehicle ended on the wrong side of 

the road. It can, however, plausibly be argued that this is an intermediate response between possible 
mobile phone use and a fatality and as such should not be included in the regression equation for 

assessing the potential causal impact of a mobile phone on the occurrence of a fatality. 
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6 Unobserved Background Variables 

6.1 Confounders in the Presence of Independencies 

The main limitation to the interpretation of observational studies is often the possible presence 
of unobserved confounders, i.e. variables, U, whose omission seriously distorts the dependence 
of interest, but which were not observed, perhaps because their existence and nature were not 

appreciated. 

That is, we would like to have studied /r\cbu but in fact can only estimate fR\CB In this discussion 
we again ignore possible intermediate variables /; see Figure 4a. 

To study the relation between these distributions we return first to the linear case, writing now 

Prc.b = Prcbu + Pru.cbPucb, (9) 

*<^ Rc<^ R^y (a) #U (b) #U (c) tK 

Figure 4. (a) Relations between R, C and B in presence of unobserved confounder U; (b) Missing edge between U and R, 
Le. RALU I CB; (c) Missing edge between U and C, Le. UALC \ B. 

The two terms on the right-hand side of (9) correspond to the two paths between C and R not 

passing through B in Figure 4a. It follows that inclusion of U has no effect on the regression 
coefficient if and only if the second term on the right-hand side vanishes, i.e. either Pru.cb 

? 0 
or Pcu.b = 0 = Puc.B' The first condition is shown in Figure 4b; there is no direct edge from U 
to R. The second condition is shown in Figure 4c; there is no edge between U and C given B. If 

C is a randomized treatment the second condition is satisfied in virtue of the design even were the 
randomization probabilities to depend on B\ see Figure 4c. In observational studies, the assumption, 
if made, amounts to supposing that the value of C is determined in a way that is essentially equivalent 
to such randomization, an assumption not directly checkable in the absence of observation of U. It 

may sometimes be rather less problematic if the variable U is a feature expected to be important but 
which is not observed in the study under analysis, although it has been observed in other studies. 

It is immaterial whether U is a response to or explanatory to B and in general both variables may 
be multidimensional and the ordering relation between them a partial ordering, in that some pairs of 

variables may be on an equal footing in a sense to be explained in Section 7.1. Therefore no direction 

need be attached to the edge between U and B. 

The above discussion is for linear systems. For general distributions, the condition that RALU | CB 

implies directly that /r\cbu 
= 

/r\bc, corresponding to Pru.cb = 0- That is, inclusion of U in a 

study of the dependence of R on explanatory variables would, in large samples, induce no change. 
First if RALC \ BU and CALU | #, then (R, U)ALC \ B, so that in the null case of no effect of C 

on R given BU no spurious effect is induced by omitting U. 

Secondly when there is dependence of R on C given BU, but CALU \ B, as in Figure 4c, the form 

of the relation is changed by marginalizing over U, but it can be shown (Cox & Wermuth, 2003) that 

there is qualitative invariance in the following sense. If R is stochastically increasing with C in the 

conditional distribution given B, U then it remains stochastically increasing after marginalization 
over U. Thus, so long as UALC \ B, marginalizing over U cannot induce an effect reversal, showing 
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the strong consequences of randomization in inducing qualitatively similar dependencies of R on C 

given B and of R on C given B and U. 

However, even if C1LBU, as in the case of randomization, there may be an unobserved interactive 

effect of U and C on the response R. This is, for instance, the case in the example of stroke patients 
mentioned in Section 3. There C is a blood-thinning treatment and ?/, the unobserved status of the 

patient, could have two levels, corresponding to a burst vessel or a thrombosis. The omission of this 

distinction had led to inconclusive and contradictory results in early controlled clinical trials with 

thrombolytic agents (Zivin & Choi, 1991). 
One important and traditional approach to the possible effect of unobserved confounders is by 

sensitivity analysis. That is, one considers how strong an effect an unobserved confounder would 

have to exert to explain an apparent dependence and then, if that effect is strong, one examines 

what possible unobserved features might exert such an effect. Detailed discussion of this is given by 
Rosenbaum (2002). 

6.2 Confounders and Instrumental Variables 

We have seen in the previous subsection some very special circumstances in which no confounding 
is induced by unobserved background variables. There is another possibility of correcting for bias 
induced by an unobserved confounder. We develop this in outline for the simple system of four 
variables /?, C, Z, ?/, that is omitting B purely to simplify the notation. Here U is again unobserved. 
In the system shown in Figure 5a, the variable Z is called an instrumental variable. It is marginally 
independent of U and it exerts an influence on R via C. 

c c c 

(a) #U (b) (c) 

Figure 5. (a) Graphical representation of dependence of R on C and unobserved U, involving instrumental variable Z. (b) 
Equivalent structural equation model with dashed edge denoting correlated errors, (c) Equivalent saturated system. 

In the linear case this gives for variables measured from their mean 

R = Prc.uC+ + Pru.cU+ r, 
C= /3cuU+ pCZZ+ C, nm 

Z = Z, U ^ 

where the e's are error terms uncorrected with the explanatory variables on the right-hand side of 
the relevant equation. The variables are measured from their means. The special assumptions about 

Z have been used to simplify the notation. Elimination of U from the above equations shows that 
the system R, C, Z is saturated, i.e. has an arbitrary covariance matrix. This implies that the special 
independence assumptions made in formulating these equations cannot be empirically tested from 

R,C, Z alone; they can be justified only on subject-matter grounds. It follows that on investigating 
the system in which U is unobserved 

cov(/f, Z) - PrC.uPczvk{Z\ cov(C, Z) = ?czvar(Z), 
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from which it follows that the coefficient of interest, namely Prc.u, can be estimated via cov(/?, Z)/ 

cov(C,Z) = foz/jScz. 
This argument has a long history in more general form in econometrics (Goldberger, 1991) but until 

recently appears to have been little used in other fields and possibly is less frequently employed also 

in its original context. This is partly because the assumptions are strong and not directly checkable 

and partly because the resulting estimate has low precision unless the denominator pCz is well 

determined, i.e. the relation between C and Z is quite strong. 
The instrumental variable formulation in (10) with U unobserved is equivalent to the structural 

equation model 

R = aC + nR, C = pZ + nc, 

summarized in Figure 5b. In this Z is uncorrected with rjc but C is correlated with nR, so that 

the first equation is not a least squares regression equation. There are six parameters in this system 

equivalent to the saturated system for /?, C, Z shown in Figure 5c. 

7 Joint Responses and Joint Causes 

7.1 General Formulation 

The discussion in Sections 3-6 has hinged on the assumption that all variables may be ordered 

so that for any pair of variables one is explanatory to the other considered as a response. While 

whenever B and / are sets of variables with several components ordering of the variables within the 

sets may be largely irrelevant, the set-up is too restrictive for many purposes and we therefore sketch 

a more general formulation, thereby returning to Figure 1. 

For each individual we suppose that a number of features or variables are recorded. These can 

be classified in various ways that are context-specific. Typically one group will be one or more 

response variables, representing in some sense outcomes. Another group will be explanatory to those 

response variables and also can be regarded as candidate causal variables, in particular as conceivably 

taking values for that individual different from those actually obtaining. A further set of variables is 

regarded as intrinsic in that their values are essential to the definition of the individual in question. 
Intrinsic variables are not regarded as potentially causal. Finally there may be intermediate responses, 

sometimes used as surrogate markers, between the explanatory variables and the responses of main 

interest. 

In our graphical representation we place the intrinsic variables and other background variables in 

a box to the right enclosed with double lines to indicate that they are not represented probabilistically 
and are not potential causal variables in the context considered. Indeed the only reason to represent 
them probabilistically would be to see whether their distribution matches that in some target popu 

lation, an issue we do not address here. 

For all other variables we assume the following. For any pair of variables, say X;, Xj either 

Xi is explanatory to Xj or vice versa 

Xi and Xj are to be considered on an equal footing. 

More detailed distinctions can be drawn. The explanatory-response relation may be based on tem 

poral ordering, a strong sense, or on a subject-matter working hypothesis, the latter being the only 

possibility in those cross-sectional studies in which the variables measured all refer to the same time 

point. Two or more variables which are somewhat arbitrary coordinates specifying a single multivari 

ate feature are naturally regarded on an equal footing. In other cases it may just be a noncommittal 

view of the direction of dependency. 
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It then follows under mild additional assumptions that the variables can be grouped in blocks in 

such a way that 

all variables in the same block are on an equal footing 
the blocks are ordered with all variables in one block representing potential responses to 
variables in subsequent blocks. 

In the graphical representation of dependencies, directed edges are used between nodes in different 
blocks and undirected edges between nodes in the same block, missing edges denoting conditional 

independencies. To cover the possibilities encountered in applications it is necessary to distinguish 
two types of conditioning (Cox & Wermuth, 1993, 1996) but here we consider only the possibility 
that in considering the relation between two nodes in the same block g we always condition on nodes 
in subsequent blocks and marginalize over any additional nodes in block g. 

Example. Cox & Wermuth (1996, Chapter 6) discussed a cross-sectional study of the factors 

influencing diabetic patients in controlling their disease. Because of the cross-sectional nature of the 

study the progression of variables from explanatory to response, shown in graphical form in Figure 
6, is based to some extent on working hypothesis; for example, it is possible that success at control 
is explanatory to knowledge of the disease rather than vice versa. This raises the interesting issue of 
the implications of the independencies implied by one ordering of the variables were the blocking 
of the variables to be rearranged (Wermuth & Cox, 2004). 

Y, X, Types of W, 
glucose know- attribution: duration of 
control ledge illness 
(GHb) about Z, fatalistic 

illness externality A, 
duration of 

U, social schooling 
externality 

B, 
V, internality gender 

Figure 6. Schematic representation of dependencies in study of diabetes. 

Details of the analysis are given in the reference cited. The essence is that the primary outcome 
variable is regressed on all other variables by linear regression with some checks for interactions 
and nonlinearities. Then the next variable is regressed on all other variables, excluding the primary 
response and so on. In this instance no special complications arose from variables on an equal 
footing. An outline summary of the resulting analysis is given in Figure 7a with Figure 7b showing 
the structure after conditioning on A, duration of schooling, used as a binary variable. An important 
conclusion of the analysis was that there was an interaction between A and duration of illness, W, 
studied by examining the dependencies of F, X and Z separately at the two levels of A. Such an 
interaction is not easily shown in the graphical representations used here. In fact, while the same type 
of generating process is suggested at the two levels of A the direction and strengths of the effects 
differ. 
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iV^Ut^La \ / 
givenA 

x?| ??[* I xb<<-crz 
(a) (b) 

Figure 7. (a) Detailed representation of dependencies between variables listed and grouped in Figure 6. (b) Representation 

conditionally on A, Le. for two given levels of formal schooling. 

7.2 Causal Variables on an Equal Footing 

This more general formulation allows us to address further issues. Very particularly, suppose that 

there are two potential causal variables C\ and C2 on an equal footing. When we notionally intervene 
on C\ what happens to C2? There are several possibilities 

C2 may be unaffected, i.e. for this particular purpose be treated as a background variable. 

C2 may change as specified by the generating distribution, i.e. for this particular purpose be 

treated as an intermediate response. 

C2 may change in a way that is governed by a different process from that involved in the 

original generating process, possibly but not necessarily a situation intermediate between the 

first two. 

It may ultimately be more informative to regard C\, C2 as two factors defining a factorial 

"treatment" structure to be assessed simultaneously rather than separately. 

Example. Suppose that C\ and C2 are respectively sodium and potassium levels in the blood and R 

is some response, perhaps blood pressure or perhaps occurrence of a cardiac event. In the following 
discussion it is important to distinguish the blood level of, say, sodium from the intake of sodium. 

The latter is in principle controllable whereas the former is the outcome of a complex process. 
If for a particular individual we consider imposing a change in sodium level to a new value, or 

perhaps consider imposing a change of a certain magnitude, it is unclear what will happen to the level 

of potassium. It would be conceptually possible to manipulate potassium intake rather than blood 

level directly so that potassium blood level remained constant and this would be the first possibility 
listed above. 

The second possibility would be that potassium changes, consequent on the change in sodium, in 

the same way as in the data under analysis; of course the reasonableness of this depends strongly on 

how the data are collected and if the analysis involves inter-personal comparisons the assumption is 

unreasonable. 

The third possibility would involve collecting special data to study the effect of imposed changes 
of sodium level on potassium level. This might include the study of the dynamics of the processes 
involved. 

The fourth possibility of treating sodium and potassium levels as factors defining an explicit or 

implicit factorial experiment would imply interventions in which both variables were manipulated to 

preset levels and, while in principle more informative about the effect on ultimate response, would 

be even more remote from direct observation. 
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The third possibility listed above requires for its implementation a separate set of data or theo 

retical calculation estimating the effect on Ci of changing the prescribed level of C\ and use of a 

generalization of (7) in the form 

P*RC\.B 

~ 
PRC\.BCi + PrC1.C\BYc2C].B 

Here Yc2cx.b is a regression coefficient for an investigation in which C\ is varied and the consequent 

changes of C2 are measured. 

8 Some More Detailed Issues 

8.1 Choice of Candidate Causal Variables 

We now deal more briefly with some specific issues. For a variable C to be a potential causal 
variable C it needs to be reasonable to consider at least notionally the idea that an individual with 

C = c might have had a different value of c without changing the essential nature of that individual. 
This consideration is context-specific. Thus in most situations gender would not be considered as a 

candidate cause. For to do so would involve the notion of considering the value of R resulting for, say, 
a male if that individual were female, all other aspects remaining unchanged, and this usually makes 
no sense. In contexts of possible discriminatory employment practices, however, the comparison of, 

say, pay for a man with given work experience, skills, etc. as compared with a woman with the same 

work experience, etc. is the central issue (Dempster, 1988). 
Another example is that passage of time is not to be considered as causal in itself, only processes 

that develop in time. This is because the notional intervention in which passage of time does not 

occur, other things being equal, makes no sense. Processes that develop in time may be considered 
as potentially causal. 

In principle in the more general formulation of Section 7 any variable that is not considered as 

intrinsic might be considered as potentially causal for the response R. Which are actually viewed as 
causal and which as background variables depends crucially on the objectives of the investigation, 
the most ambitious objective being to analyse the whole set of pathways from initial explanatory 
variables to response. Since implicitly causality is regarded, in the contexts of most statistical interest, 
as a multiple process there is no conflict in regarding for particular purposes variables that could 
be causal as part of the background variables B in assessing the effect of a variable C of primary 
concern. 

In approaching a system from first principles it would be sensible to regard variables far back in 

time, or in the representation in question, as in some sense initial causes and then to estimate the 
additional information provided by each new stage as it arises. An instance is the so-called foetal 

origins hypothesis, where foetal events are claimed to have a life-long health impact. Of course 
causal variables well separated from the response will often show relatively weak dependency. 

In such studies the role of interaction effects may be very important and this is especially important 
in genetic epidemiology. For example, suppose that in studying a clinical outcome both clinical and 

genetic variables are considered explanatory. It might well happen that genetics is explanatory for 
disease occurrence and indeed for some current clinical aspects, even if its overall explanatory power 
for outcome is relatively small compared with current clinical status. Another important possibility 
is of interaction between genetic and clinical features, in extreme cases that genetics separates the 

disease into distinct types for which the interpretation of given clinical features is different. The 

study of Wilm's tumour (Beckwith et al, 1990) is an important example of this. 
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8.2 Basis of Generalization 

Suppose next that a potentially causal difference is established between, say, two treatments on the 
basis of a well-conducted randomized trial. Under what circumstances is it reasonable to conclude 
that similar conclusions will apply in the future in inevitably somewhat different circumstances? 

Also what basis is there for concluding that the conclusion will apply to a single individual? 

Even if the conclusions are replicated in independent studies, any notion of generalization based 
on regarding the studies as a random sample from a population of studies seems very artificial (Yates 
& Cochran, 1938), even though any such replication is clearly reassuring at a qualitative level at least. 

Basis for generalizing may better rest partly on second-level causality, i.e. on some understanding of 

underlying process, and partly on absence of interaction with important intrinsic variables describing 
the study individuals. Subject to essential stability of effect, the basis for generalization can be 

achieved either by synthesis of conclusions from different studies, or by initial design to ensure a 

broad range of validity; see, for example, Cox (1958, p. 17). 
The same considerations apply also to specificity. A randomized experiment establishes an average 

treatment effect over the study individuals. To conclude something for a new specific individual, 
for example for a new patient, requires both generalization, often to a new environment, and the 

assumption that there is relatively little treatment by individual interaction. Part of the advantage of 

independent replication of studies with a broadly similar objective as contrasted with increasing the 

size of single studies is that the range of explanatory features involved is likely to be increased. 

The formulation (2) and (3), which is directly adapted from one used in the theory of experimental 

design, is initially formulated deterministically at an individual level. The addition to the notional 

responses of independent and identically distributed random variables representing measurement 

error has no immediate impact on the resulting analysis and conclusions. A different interpretation 
of such an extended model is to regard the potential causal effect as defined only at an aggregate 
level over some population of individuals (Cox, 1958, sections 2.1-2.3). In the original formulation, 

however, the conclusions refer to the individuals actually studied. 

The population-based formulation appears to give a broader base to the conclusions but unless the 

individuals studied are a random sample, or at least a representative sample, of a target population 
of interest the extension has little direct force. If, indeed, the population is purely hypothetical then 

it is unclear that any real basis for meaningful generalization has been achieved. 

Example. In a clinical trial setting the conclusions might be regarded as applying fairly directly to 

the population of individuals from the regions in question and giving informed consent to participa 
tion. This may well differ appreciably from the target population of, for example, all patients with a 

particular condition. If there are special features in which these populations differ, it becomes espe 

cially important to check that any treatment effect does not depend, i.e. interact with, those features. 

Thus in randomized clinical trials it is desirable to check not only that the features agree reasonably 
well as between the treatment arms, i.e. check on the effectiveness of the randomization, but more 

importantly that any major discrepancies with the presumed target population are uncovered. 

For specificity the individual level formulation of Section 8.1 is more appropriate but as is clear 

this can be checked only partially. 
We do not, even in the discussion of Section 7, allow the possibility that two variables C\ and C2 

on an equal footing are each a cause of the other and hence in effect responses. Such representations 
are studied in linear form in the econometric literature as simultaneous equation models in which 

cyclic dependencies are permitted such as that R2 depends on R\ and R\ depends on R2. Such 

dependencies are best studied by the explicit introduction of time. 
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8.3 Design Issues 

We do not in this paper discuss details of study design and statistical analysis important though 
these ideas are. Implicitly we have taken the form of most studies to be randomized experiments 
or their approximate observational equivalent, a cohort study. If applied to cross-sectional data 

particularly strong subject-matter knowledge is essential to give any plausibility to the ordering of 

variables that is essential to the present analysis. In some fields, especially those studying relatively 
rare outcomes, retrospective studies, broadly of the case-control form, are common. They are best 

analysed and interpreted by considering the questions: what is the corresponding cohort study and 

to what extent does the retrospective data allow conclusions about such a cohort study to be drawn? 

As such, no special issues of principle concerning the nature of causality appear, although there are 

more detailed and often major concerns about data quality, especially concerning the possibility of 

recall bias, and about the appropriate choice of control group. 

9 Discussion 

The object of the present paper is to review the concepts and assumptions involved in attaching 
a causal interpretation to statistical dependencies. Especially in the context of observational studies 

the role of unobserved confounders is probably the most critical aspect. We have ignored the 
more technical statistical issues. These include key concerns about data quality, the formulation 

of representations that capture empirical dependencies in interpretable form, the assessment of 

the magnitude of random errors of estimation and the dealing with biases and random errors of 

measurement, missing values and any consequences of unusual design structures. 

The main broad implications for statistical work are simple but important and are as follows: 

Studies of dependence with a causal objective are not to be confused with the construction of 

empirical prediction systems. 

Only some variables may be treated as potentially causal and their choice is critical. 

Choice of explanatory variables for inclusion or exclusion in principle from regression-like 
calculations is crucial. 

This choice may be clarified by a chain block representation of the variables involved corre 

sponding to a process in single or joint variables. 
Checks for possible interaction between the effect of a potential cause and intrinsic features 
of the study individuals are essential, in particular in connection with generalizability and 

specificity. 

Especially in observational studies, some description, even if only qualitative, of the possible 
role of unobserved explanatory variables is desirable in general and essential if they represent 
confounders. 

Our attitude is that the search for causality is of key importance in many contexts but that the goal 
is hard to achieve except when large effects are involved. Then sensitivity analysis may reasonably 
establish that some of the complications discussed here are unlikely to affect the conclusions mate 

rially and that delicate statistical analysis is likely to be unnecessary. The approach sketched above 
is designed to encourage the uncovering of causal structure while at the same time being realistic 
about the assumptions involved. In more applied contexts, especially biomedical ones, there is some 

empirical evidence that false claims of causality undermine the credibility of other careful studies 
where causality is indeed reasonably firmly established. The case for reasoned and optimistic caution 

is then particularly clear. 
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Resume 

On fait une revue critique de la causalite statistique. On presente trois definitions de la causalite et on discute les 

consequences pour 1'analyse statistique et 1'interpretation. 
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