

Familial and socio-economic influences on foetal growth across three generations

Bianca L De Stavola, David A Leon, Ilona Koupil*

London School of Hygiene and Tropical Medicine and *University of Stockholm

LSHTM, 23 February 2011

1 Background

- 2 The UBCoS Multigen Study
- 3 Preliminary results
- 4 Genetic biometrical model
- 5 Results
- 6 Potential biases

7 Summary

1 Background

- 2 The UBCoS Multigen Study
- 3 Preliminary results
- 4 Genetic biometrical model
- 5 Results
- 6 Potential biases

7 Summary

- Intergenerational studies: strong correlations in size at birth between parents and offspring (0.20-0.25 for mothers, less for fathers).
- Two mechanisms:
 - 1 Genetic:
 - father-offspring: can only be explained via **foetal genes**
 - mother-offspring: could also be attributed to maternal genes that influence fetal growth

 maternal lifestyle influences in utero environment (e.g. smoking and diet) and is correlated across generations.

However:

- incorrect paternity attribution may inflate difference between mother-offspring and father-offspring correlations
- limited evidence of impact of earlier generations socio-economic factors on size at birth correlations
- little data on more than 2 generations.

- Intergenerational studies: strong correlations in size at birth between parents and offspring (0.20-0.25 for mothers, less for fathers).
- Two mechanisms:
 - 1 Genetic:
 - father-offspring: can only be explained via **foetal genes**
 - mother-offspring: could also be attributed to maternal genes that influence fetal growth

 maternal lifestyle influences in utero environment (e.g. smoking and diet) and is correlated across generations.

However:

- incorrect paternity attribution may inflate difference between mother-offspring and father-offspring correlations
- limited evidence of impact of earlier generations socio-economic factors on size at birth correlations
- little data on more than 2 generations.

- Intergenerational studies: strong correlations in size at birth between parents and offspring (0.20-0.25 for mothers, less for fathers).
- Two mechanisms:
 - 1 Genetic:
 - father-offspring: can only be explained via **foetal genes**
 - mother-offspring: could also be attributed to maternal genes that influence fetal growth

 maternal lifestyle influences in utero environment (e.g. smoking and diet) and is correlated across generations.

However:

- incorrect paternity attribution may inflate difference between mother-offspring and father-offspring correlations
- limited evidence of impact of earlier generations socio-economic factors on size at birth correlations
- little data on more than 2 generations.

- Intergenerational studies: strong correlations in size at birth between parents and offspring (0.20-0.25 for mothers, less for fathers).
- Two mechanisms:
 - 1 Genetic:
 - father-offspring: can only be explained via **foetal genes**
 - mother-offspring: could also be attributed to maternal genes that influence fetal growth

 maternal lifestyle influences in utero environment (e.g. smoking and diet) and is correlated across generations.

However:

- incorrect paternity attribution may inflate difference between mother-offspring and father-offspring correlations
- limited evidence of impact of earlier generations socio-economic factors on size at birth correlations
- little data on more than 2 generations.

The **aims** of the talk are to assess:

- A) whether correlations in size at birth across three generations are consistent with those found across two generations
- B) the extent to which these correlations could be explained by socio-demographic continuities across generations.

Using the unique and rich data available in UBCoS Multigen Uppsala Birth Cohort Multigenerational Study (UBCoS Multigen) Prospective study of men and women born in Uppsala, Sweden (1915-1929) and their descendants (currently linking to 4th & 5th generation)

Am J Epidemiol, to appear

The **aims** of the talk are to assess:

- A) whether correlations in size at birth across three generations are consistent with those found across two generations
- **B)** the extent to which these correlations could be explained by socio-demographic continuities across generations.

Using the unique and rich data available in UBCoS Multigen Uppsala Birth Cohort Multigenerational Study (UBCoS Multigen) Prospective study of men and women born in Uppsala, Sweden (1915-1929) and their descendants (currently linking to 4th & 5th generation)

Am J Epidemiol, to appear

The **aims** of the talk are to assess:

- A) whether correlations in size at birth across three generations are consistent with those found across two generations
- **B)** the extent to which these correlations could be explained by socio-demographic continuities across generations.

Using the unique and rich data available in UBCoS Multigen Uppsala Birth Cohort Multigenerational Study (UBCoS Multigen) Prospective study of men and women born in Uppsala, Sweden (1915-1929) and their descendants (currently linking to 4th & 5th generation)

Am J Epidemiol, to appear

1 Background

- 2 The UBCoS Multigen Study
- 3 Preliminary results
- 4 Genetic biometrical model
- 5 Results
- 6 Potential biases

7 Summary

イロト イロト イヨト イヨト 二日

• Original cohort (Leon et al. 1998)

- Generation 1 (G1): all Uppsala births in 1915-29 (∽ 14,000), Source: Uppsala Academic Hospital (UAH) birth records
- descendants traced via the Swedish Multigenerational Registry (Koupil, 2007):
 - Generation 2 (G2): their children (∽ 20,000),
 - Generation 3 (G3): their grandchildren (∽ 33,000)
 - great-grand-children (G4), great-great-grand-children (G5) ...
 Source: several
- 8,550 UBCoS G1 grandparents with 33,693 grandchildren

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ・ クタク

• Original cohort (Leon et al. 1998)

- Generation 1 (G1): all Uppsala births in 1915-29 (∽ 14,000), Source: Uppsala Academic Hospital (UAH) birth records
- descendants traced via the Swedish Multigenerational Registry (Koupil, 2007):
 - Generation 2 (G2): their children (∽ 20,000),
 - Generation 3 (G3): their grandchildren (∽ 33,000)
 - great-grand-children (G4), great-great-grand-children (G5) ...
 Source: several
- **8,550 UBCoS G1** grandparents with 33,693 grandchildren

• Original cohort (Leon et al. 1998)

- Generation 1 (G1): all Uppsala births in 1915-29 (∽ 14,000), Source: Uppsala Academic Hospital (UAH) birth records
- descendants traced via the Swedish Multigenerational Registry (Koupil, 2007):
 - Generation 2 (G2): their children (∽ 20,000),
 - Generation 3 (G3): their grandchildren (∽ 33,000)
 - great-grand-children (G4), great-great-grand-children (G5) ...
 Source: several
- **8,550 UBCoS G1** grandparents with 33,693 grandchildren

- Birth data: UAH, Swedish Birth Registry (1972-)
- SEP, demographic vars : Censuses (1960, 1970, 1980), linked longitudinal studies, etc
- Others: Conscripts Register, School records, ...

Linkage depends on calendar year \Rightarrow no birth data for G2

Background UBCoS Multigen Preliminary results Genetic model Results Biases? Summary References Main variables and data for these analyses

- **standardized size at birth** (birth weight and length)
- SEP and demographic variables

- **inclusions**, for each generation: singletons, not adoptees
- restrictions: to G3 with birth data \Rightarrow 7,657 G1 and 25,141 G3

GP type	G 1	G1-G3
Mat GMoth	2,340	6,169
Mat GFath	2,612	7,219
Pat GMoth	2,490	6,965
Mat GFath	2,694	7,799
Total	10,136	28,152
All Gpar	7,657*	$25,141^\dagger$

* Some grandparents contributes to maternal and paternal entries

† Some grandchildren have more than one grandparent

Analytical complexity:

- (a) Clustered data
 - $\blacksquare~\sim$ 3 G3 per G1
- (b) Prospective design
 - Incomplete pedigrees
- c) Missing data
 - Mat Gmothers least complete

GP type	G 1	G1-G3
Mat GMoth	2,340	6,169
Mat GFath	2,612	7,219
Pat GMoth	2,490	6,965
Mat GFath	2,694	7,799
Total	10,136	28,152
All Gpar	7,657*	$25,141^\dagger$

* Some grandparents contributes to maternal and paternal entries

† Some grandchildren have more than one grandparent

Analytical complexity:

- (a) Clustered data
 - $\blacksquare~\sim$ 3 G3 per G1
- (b) Prospective design
 - Incomplete pedigrees
- c) Missing data
 - Mat Gmothers least complete

GP type	G 1	G1-G3
Mat GMoth	2,340	6,169
Mat GFath	2,612	7,219
Pat GMoth	2,490	6,965
Mat GFath	2,694	7,799
Total	10,136	28,152
All Gpar	7,657*	$25,141^\dagger$

* Some grandparents contributes to maternal and paternal entries

† Some grandchildren have more than one grandparent

Analytical complexity:

- (a) Clustered data
 - $\blacksquare \sim 3 \; \text{G3}$ per G1
- (b) Prospective design
 - Incomplete pedigrees
 - c) Missing data
 - Mat Gmothers least complete

GP type	G 1	G1-G3
Mat GMoth	2,340	6,169
Mat GFath	2,612	7,219
Pat GMoth	2,490	6,965
Mat GFath	2,694	7,799
Total	10,136	28,152
All Gpar	7,657*	$25,141^\dagger$

* Some grandparents contributes to maternal and paternal entries

† Some grandchildren have more than one grandparent

Analytical complexity:

- (a) Clustered data
 - $\blacksquare \sim 3 \; \text{G3}$ per G1
- (b) Prospective design
 - Incomplete pedigrees
- (c) Missing data
 - Mat Gmothers least complete

1 Background

- 2 The UBCoS Multigen Study
- 3 Preliminary results
- 4 Genetic biometrical model
- 5 Results
- 6 Potential biases

7 Summary

Correlation coefficients for standardized BW (N_{pairs}=28,152)

	4 groups			2 groups
G1	Coef.	(95% CI)	Coef.	(95% CI)
Mat gm	0.124	(0.095, 0.153)	0.125	(0.105, 0.145)
Mat gf	0.126	(0.099, 0.153)		
Pat gm	0.093	(0.065, 0.121)	0.096	(0.077, 0.115)
Pat gf	0.099	(0.073, 0.126)		

Estimates based on a RE model with GP as clusters; adj for G1 & G3 parity and year of birth

Correlations maintained across generations

- Stronger associations for maternal grandparents
- Model with 2 groups equally good fit → maternal/paternal lineage as the main discriminant (p=0.02)

Including SEP variables as potential mediators:

	Minimally adjusted		F adj	ully justed
	Cor. Coef.	or. Coef. (95% CI)		(95% CI)
Mat GP	0.122	(0.095, 0.150)	0.121	(0.093, 0.148)
Pat GP	0.091	(0.065, 0.117)	0.092	(0.066, 0.117)

GP: grandparent

- Minimally: adjusted (for G0 & G2 parity and G1 & G3 year of birth)
- Fully: additionally adjusted for G2 smoking, G2 income, G1 and G2 education, G0 and G2 mat age , G0 and G1 SEP, G0 mat marital status
- analysis carried out on a subset because of missing values: N_{pairs}=14,382

No evidence of mediation (or effect modification)

Results might be affected by bias because:

- likely measurement/missclassification error affecting the socio-economic variables
- missing data
- They also do not exploit the family structure of the data.

Alternative approach:

Genetic biometrical model

Partition total variance of size at birth into: foetal genes, maternal genes, shared environmental factors, unshared environmental factors.

Results might be affected by bias because:

- likely measurement/missclassification error affecting the socio-economic variables
- missing data
- They also do not exploit the family structure of the data.

Alternative approach:

Genetic biometrical model

Partition total variance of size at birth into: foetal genes, maternal genes, shared environmental factors, unshared environmental factors.

1 Background

- 2 The UBCoS Multigen Study
- 3 Preliminary results
- 4 Genetic biometrical model
- 5 Results
- 6 Potential biases

7 Summary

イロト イロト イヨト イヨト 二日

Partitioning the variance of size at birth of the G1 and G3 study members, under certain assumptions, may lead to a model such as this:

Ass: rand mating, genotypic parent-child: 0.5; no interactions, constant effects

Twin design:

- Data on **Y**: phenotype of interest
- measured in pairs of monozygotic (MZ) and dizygotic (DZ) twins
- Exploit: MZ twins share all their genes while DZ share half

ACE Model

Widely used to separate genetic from environmental sources of variation in a phenotype $\ensuremath{\mathbf{Y}}.$

Specific assumptions:

- genes have additive effects
- twins in a set experience the same environment (at least in childhood)

Gielen et al, Behav Genet (2008) 38:4454

Background UBCoS Multigen Preliminary results Genetic model Results Biases? Summary References An introduction using twins data

Twin design:

- Data on **Y**: phenotype of interest
- measured in pairs of monozygotic (MZ) and dizygotic (DZ) twins
- Exploit: MZ twins share all their genes while DZ share half

ACE Model

Widely used to separate genetic from environmental sources of variation in a phenotype ${\bf Y}.$

Specific assumptions:

- genes have additive effects
- twins in a set experience the same environment (at least in childhood)

Gielen et al, Behav Genet (2008) 38:4454

Background UBCoS Multigen Preliminary results Genetic model Results Biases? Summary References The ACE model for one member of the twins set

The phenotype is a weighted sum of three components:

$\mathbf{Y} = \mathbf{a}\mathbf{A} + \mathbf{c}\mathbf{C} + \mathbf{e}\mathbf{E}$

- **genetic** factors: represented by the latent variable A
- shared environmental factors: represented by C
- unshared environmental factors: represented by E

All latent factors: independent N(0,1); a, c, and e: path coefficients.

Background UBCoS Multigen Preliminary results Genetic model Results Biases? Summary References The ACE model for the twins set

Covariance between A_{1i} and A_{2i} is 1 for MZ and $\frac{1}{2}$ for DZ

イロト イポト イヨト イヨト 二日

Background UBCoS Multigen Preliminary results Genetic model Results Biases? Summary References Heritability and identification

$$\label{eq:constraint} \begin{split} \textbf{Y}_{ij} &= \textbf{a} \textbf{A}_{ij} + \textbf{c} \textbf{C}_j + \textbf{e} \textbf{E}_{ij} \\ \text{This model implies:} \end{split}$$

•
$$Var(Y_{ij}) = a^2 + c^2 + e^2$$

- $Cov(Y_{1j}, Y_{2j}) = a^2 + c^2$ for **MZ** twins
- $Cov(Y_{1j}, Y_{2j}) = \frac{a^2}{2} + c^2$ for **DZ** twins

Useful:

to estimate heritability (h)= $\frac{a^2}{a^2+c^2+e^2}$

Identification:

The model has 3 parameters with three sufficient statistics

Background UBCoS Multigen Preliminary results Genetic model Results Biases? Summary References Heritability and identification

$$\label{eq:constraint} \begin{split} \textbf{Y}_{ij} &= \textbf{a}\textbf{A}_{ij} + \textbf{c}\textbf{C}_{j} + \textbf{e}\textbf{E}_{ij} \\ \text{This model implies:} \end{split}$$

•
$$Var(Y_{ij}) = a^2 + c^2 + e^2$$

•
$$Cov(Y_{1j}, Y_{2j}) = a^2 + c^2$$
 for **MZ** twins

•
$$Cov(Y_{1j}, Y_{2j}) = \frac{a^2}{2} + c^2$$
 for **DZ** twins

Useful:

to estimate heritability (h)= $\frac{a^2}{a^2+c^2+e^2}$

Identification:

The model has 3 parameters with three sufficient statistics

・ロン ・四 と ・ ヨン ・ ヨン … ヨ

Partition the variance of standardised BW into components from:

- **foetal** genes: represented by *F*; **maternal** genes: *M*
- **shared** environm factors: *C*; **unshared** environmental factors: *E*

Ass: rand mating, genotypic parent-child: 0.5; no interactions, constant effects

Covariance btwn F_{1i} and F_{3i} is $\frac{1}{a}$ for all, covariance btwn M_{1i} and M_{3i} is $\frac{1}{a}$ for Mat Grandparents, 0 otherwise.

 \mathbf{Y}_{ij} : phenotype for member *i* in family *j*

$$\mathbf{Y}_{ij} = \mathbf{fF}_{ij} + \mathbf{mM}_{ij} + \mathbf{cC}_j + \mathbf{eE}_{ij}$$

This model implies:

•
$$Var(Y_{ij}) = f^2 + m^2 + c^2 + e^2$$

- $Cov(Y_{1j}, Y_{3j}) = \frac{1}{4}f^2 + \frac{1}{4}m^2 + c^2$ for Maternal GParents
- $Cov(Y_{1j}, Y_{3j}) = \frac{1}{4}f^2 + c^2$ for Paternal GParents

Since the model has 4 parameters, it is not identified. However, it can be identified if we specify C in terms of some observables

Background UBCoS Multigen Preliminary results Genetic model Results Biases? Summary References The full genetic biometrical model for G1-G3 pairs

Background UBCoS Multigen Preliminary results Genetic model Results Biases? Summary References

Genetic biometrical model

Contributions to the variances and covariances

The model implies:

- $Var(Y_{ij}) = f^2 + m^2 + c^2 + e^2$
- $Cov(Y_{1j}, Y_{3j}) = \frac{1}{4}f^2 + \frac{1}{4}m^2 + c^2$ for Maternal GParents
- $Cov(Y_{1j}, Y_{3j}) = \frac{1}{4}f^2 + c^2$ for Paternal GParents

Contributions to the variance:

• Foetal =
$$\frac{f^2}{f^2+m^2+c^2+e^2}$$

• Maternal =
$$\frac{m^2}{f^2+m^2+c^2+e^2}$$

• Shared environment = $\frac{c^2}{f^2+m^2+c^2+e^2}$

Contribution to the covariances:

 \Rightarrow Environm contribution of Maternal GP: $\frac{c^2}{f^2/4+m^2/4+c^2}$

 \Rightarrow Environm contribution of Paternal GP: $\frac{c^2}{f^2/4+c^2}$

When Y is standardized, these are contributions to the correlations

BL De Stavola/Foetal growth across generations

1 Background

- 2 The UBCoS Multigen Study
- 3 Preliminary results
- 4 Genetic biometrical model

6 Potential biases

7 Summary

Higher socio-demographic status \Rightarrow positive C

BL De Stavola/Foetal growth across generations

クへで 26/40

Background UBCoS Multigen Preliminary results Genetic model Results Biases? Summary References Path coefficients

- Good fit: Observed \ predicted correlations: Mat GP: 0.114 \ 0.113; Pat GP: 0.093 \ 0.090
- Estimates conditional on G0 and G2 parity and G1 and G3 year of birth

■ robust SF to account for clustering: N_.... =12/389 > (≥

	Stand Birth weight		Stand Bir	th length
	Estimate 95% Cl		Estimate	95% CI
Mat Environment	11.6	5.9, 17.3	13.0	6.1, 20.0
Pat Environment	13.9	7.0, 20.8	14.6	7.0, 22.1

Estimates of fetal, maternal and shared environment contributions to the variance: \sim 30%; \sim 10%; \sim 1%.

BL De Stavola/Foetal growth across generations

★□> ★@> ★E> ★E> E

1 Background

- 2 The UBCoS Multigen Study
- 3 Preliminary results
- 4 Genetic biometrical model
- 5 Results

6 Potential biases

7 Summary

イロト イロト イヨト イヨト 二日

	Variable	Missing
G2	Parental education, income	1-2%
	Maternal age	0%
	Parity	0%
	Maternal smoking	46%
G1	Education, SEP	0-2%
	Parity	3%
G0	Mat marital status	0%
	Maternal age	0%
All	-	49%

Mat grandmother most affected by missingness

Sources of missingness

Due to Linkage:

missing maternal smoking status because born before 1980 (when smoking status started to be recorded)

- \Rightarrow G3 Year of birth 'causes' missingness
- G3 year of birth is completely observed: \Rightarrow MAR
- G3 year of birth is already included in the model: ⇒ Missing mechanism is ignorable if using ML+EM

Sources of missingness

Due to Linkage:

missing maternal smoking status because born before 1980 (when smoking status started to be recorded)

- \Rightarrow G3 Year of birth 'causes' missingness
- G3 year of birth is completely observed: \Rightarrow MAR
- G3 year of birth is already included in the model: ⇒ Missing mechanism is ignorable if using ML+EM

Sources of missingness

Due to Linkage:

missing maternal smoking status because born before 1980 (when smoking status started to be recorded)

- \Rightarrow G3 Year of birth 'causes' missingness
- G3 year of birth is completely observed: \Rightarrow MAR
- G3 year of birth is already included in the model: ⇒ Missing mechanism is ignorable if using ML+EM

	Stand Bir	th weight	Stand Bir	th length
	Estimate	95% CI	Estimate	95% CI
ML under MCAR				
Mat Environment	11.6	5.9, 17.3	13.0	6.1, 20.0
Pat Environment	13.9	7.0, 20.8	14.6	7.0, 22.1
ML+EM under MAR				
Mat Environment	15.8	10.7, 21.0	19.2	12.6, 25.8
Pat Environment	20.6	13.6, 27.7	19.5	13.1, 25.8

Evidence of contribution of shared environment

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

Replacing the multiple environmental indicators with estimated C:

	N ad	Minim adjusted		Fully adjusted		C justed
	Cor.	(95% CI)	Cor.	(95% CI)	Cor.	(95% CI)
Mat GP	0.122	(0.095, 0.150)	0.121	(0.093, 0.148)	0.116	(0.089, 0.144)
Pat GP	0.091	(0.065, 0.117)	0.092	(0.066, 0.117)	0.087	(0.061, 0.113)

GP: grandparent

Some effect is now explained by the environmental factors.

1 Background

- 2 The UBCoS Multigen Study
- 3 Preliminary results
- 4 Genetic biometrical model
- 5 Results
- 6 Potential biases

7 Summary

Do continuity in size at birth depend on social disadvantage?

shared environment 13-19% of the intergenerational correlations in standardized size at birth

On which basis?

- Assuming a specific genetic model, in particular a specific maternal genetic influence
- Assuming missingness was MAR, estimates were slightly inflated
- Results robust when some of the assumptions were relaxed

Why are results different from those from standard regression?

 addressing measurement error in SEP/demographic indicators recuperated part of the effect of shared environment not identified by standard regression

Background UBCoS Multigen Preliminary results Genetic model Results Biases? Summary References General comments

- Separating biological and social pathways involves assuming and measuring specific pathways
- When these cannot be properly measured an alternative approach is to separate components of 'correlations' into biological and environmental pathways
- Explicitly assessing the interplay of biology and environment would require access to genetic data (and several other assumptions)
- Final results are very much dependent on the quality of the data

- Bollen. Structural equations with latent variables. 1989. New York: John Wiley.
- Goodman A, Koupil I. Social and biological determinants of reproductive success in Swedish males and females born 1915-1929. *Evolution & Human Behavior* 2009;30:329-41.
- Leon DA et al. Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15 000 Swedish men and women born 1915-29. Br Med J 1998; 317:241-5.
- Lunde et al. Genetic and environmental influences on birth weight, birth length, head circumference, and gestational age by use of population-based parent offspring data. *AJE* 2007; 165: 734-741.
- Magnus et al. Paternal contribution to birth weight. J Epidemiol Community Health 2001; 55: 873-877.
- Skrondal A, Rabe-Hesketh S. Generalised latent variable modeling. 2004. London: Chapman & Hall.

	Stand Bir	th weight	Stand Bir	th length
	Estimate 95% CI		Estimate	95% CI
Foetal genetic	32.5	21.4,43.5	26.6	16.6, 36.6
Maternal genetic	7.5	-9.6,24.5	3.7	-11.9,19.2
Environment	1.3	0.8, 1.9	1.1	0.1, 1.6

- Weaker results for head circumference
- Similar results for birth weight and birth length, adjusted for gest age and sex
- Reassuring that estimates of genetic and maternal heritability similar to those published by Lunde (2007)

Variance components

P: phenotype M: maternal gene G: foetal gene

イロン イヨン イヨン イヨン

What if paternity is erroneously attributed?

Misclassification