More on
 Correspondence Analysis

(not discussed in the seminar)

Other Issues

Example - CA of Proximity Data

It may appear more of a novelty application, but correspondence analysis can be used to graphically depict proximity, or distance, data.

Suppose we have a square matrix of distances, N. These distances could be as the "bird fly's" (Euclidean) or some other distance measure between two towns, cities, locations, etc. Generally, for classical CA, the problem is that large cell frequencies will lead to a small distance between its row/column.

For proximity data, large distances between two towns, cities, locations, etc need to be reflected in the plot so there is a large distance between their in the plot. So Weller and Romney (1990, pg 75-76) consider that

$$
\mathbf{N}_{\text {prox }}=\mathrm{N}-\max (\mathrm{N})+1
$$

and the classical CA is performed in $\mathrm{N}_{\text {prox }}$.

Other Issues

Distance, in kilometres, of 13 major capital and metropolitan Australian cities

	Sydney	Perth	Adelaide	Melbourne	Hobart	Brisbane	Darwin	Canberra	Alice Springs	Cairns	Broken Hill	Broome	Mt Isa
Sydney	0	3289	1161	713	1057	732	3146	248	2026	1959	934	3374	1860
Perth	3289	0	2130	2721	2006	3604	2651	3087	1990	3439	2407	1681	2655
Adelaide	1161	2130	0	654	1161	1600	2616	958	1328	2124	422	2484	1581
Melbourne	713	2721	654	0	597	1374	3147	465	1890	2323	725	3122	1971
Hobart	1057	3006	1161	597	0	1790	3733	858	2462	2888	1318	3638	2568
Brisbane	732	3604	1600	1374	1790	0	2846	945	1962	1388	1223	3317	1562
Darwin	3146	2651	2616	3147	3733	2846	0	3133	1289	1679	2423	1106	1300
Canberra	248	3087	958	465	858	945	3133	0	1952	2069	801	3275	1873
Alice Springs	2026	1990	1328	1890	2462	1962	1289	1952	0	1449	1181	1366	665
Cairns	1959	3439	2124	2323	2888	1388	1679	2069	1449	0	1727	2496	784
Broken Hill	934	2407	422	725	1318	1233	2423	801	1181	1727	0	2476	1264
Broome	3374	1681	2484	3122	3638	3317	1106	3275	1366	2496	2476	0	1834
Mt Isa	1860	2655	1581	1971	2568	1562	1300	1873	665	784	1264	1834	0

From Beh \& Lombardo (2014)

Other Issues

The correspondence plot shows very similar relative positions when compared with their geographical position, except for some rotation.

Confidence Regions

There has been a lot of recent attention given to the inferential aspects in correspondence analysis. In particular, there are two ways in which one can monitor the statistical significance of a row or column point to the association between the variables

- Simple algebraic expressions - Lebart, Morineau \& Warwick (1984), Beh (2010), Beh and Lombardo (2014)
- Bootstrap techniques - Ringrose (1992, 2012), Greenacre (2007, pp 196-197)

Here we will consider this issue, but focus our attention on the first way.
The algebraic expressions we can consider derive

- Confidence circles for each point
- Confidence ellipses for each point
- The p-value of each points contribution to the association between the categorical variables (Beh \& Lombardo, 2014)

Confidence Regions

Confidence Regions

100(1- α)\% Confidence Circle
Radius length

$$
\mathrm{r}_{\mathrm{i}(\alpha)}=\sqrt{\frac{\chi_{\alpha}^{2}}{\mathrm{np}}}
$$

Lebart, Morineau \& Warwick (1984)

But

- Assumes each axis is equally weighted
- Ignores configuration in
 dimensions higher than the third

Confidence Regions

If the region does not overlap the origin that that category is a statistically significant contributor to the association.

However, despite what the three-dimensional correspondence plot suggests, the confidence circles of Lebart et al. (1984) show that Resistant does not provide a statistically significant contribution to the association. Preoccupied is not far behind.

Also, remember that the principal inertia (weight) of each axis is not the same $\left(\lambda_{1}^{2}=0.489, \lambda_{2}^{2}=0.089\right)$

Confidence Regions

100(1- α)\% Confidence Ellipse

Semi major \& minor axis length

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{i}}=\lambda_{1} \sqrt{\frac{\frac{\chi}{\alpha}_{\mathrm{X}^{2} \mathrm{p}_{\mathrm{i}}}}{}} \\
& \mathrm{y}_{\mathrm{i}}=\lambda_{2} \sqrt{\frac{\frac{\chi}{\alpha}_{\mathrm{X}^{2} \mathrm{p}_{\mathrm{i}}}}{2}}
\end{aligned}
$$

Beh (2010)

Takes into account

- Unequally weighted axes ($\lambda_{1}^{2}=0.489, \lambda_{2}^{2}=0.089$)

95 \% Confidence Ellipses

- Only when the principal inertia values are the same along each dimension will these regions be circular . . . but . . . what about Resistant and Preoccupied?

Confidence Regions

100(1- α)\% Confidence Ellipse

Semi major \& minor axis length

$$
\mathrm{x}_{\mathrm{i}}=\lambda_{1} \sqrt{\frac{\chi_{\alpha}^{2}}{\mathrm{X}^{2}}\left(\frac{1}{\mathrm{p}_{\mathrm{i} \bullet}}-\sum_{\mathrm{m}=3}^{\mathrm{M}}\left(\frac{\mathrm{f}_{\mathrm{im}}}{\lambda_{\mathrm{m}}}\right)^{2}\right)}
$$

$$
\mathrm{y}_{\mathrm{i}}=\lambda_{2} \sqrt{\frac{\chi_{\alpha}^{2}}{\mathrm{X}^{2}}\left(\frac{1}{\mathrm{p}_{\mathrm{i} \bullet}}-\sum_{\mathrm{m}=3}^{\mathrm{M}}\left(\frac{\mathrm{f}_{\mathrm{im}}}{\lambda_{\mathrm{m}}}\right)^{2}\right)}
$$

Beh (2010)

Takes into account

- Unequally weighted axes

95 \% Confidence Ellipses

- Takes into consider the information contained in dimensions higher than the second

Thank you

