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Motivation

240 patients with (censored) survival times after cancer is detected.
Explanatory variables: expression of 8000 genes in these patients.

It is possible to explain the survival of the patients using the
expression of the genes?
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Numquam ponenda est pluralitas sine necessitate

William Occam (1288-1348) proposed a meta-theory of knowledge:
“For nothing ought to be posited without necessity.”

Can be interpreted statistically as a
Aesthetic principle: enhances model interpretability through
parsimonious representation
Pragmatic principle: computability.
Ontological principle: represents expectation about nature of
solution.
Prediction principle: bias-variance trade-off

Ernst Wit Sparse surival models



Example: deletion/amplification of DNA

Problem: deletion/amplification of DNA play role in severity of breast
cancer.

Study: deletion and amplification data on 62 breast cancer patients
across 59 genes (John Bartlett, Royal Infirmary, Glasgow).

Expectation: few genes affect severity cancer (measured as NPI).

NPIi =
59∑

j=1
xijβj ,+εi (patient i = 1, . . . , 62),

subject to sparsity, i.e. many βj ≈ 0.
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Lasso applied to DNA deletion/amplification data

Some stopping rule selects 7 out of 59 genes.

Ernst Wit Sparse surival models



Geometry of the L1 penalty = Sparsity

Maximize `(β) = −(y − Xβ)t(y − Xβ), subject to ||β‖|1 ≤ 3.
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Advantages and disadvantages of L1 penalty

Advantages:
Convenient operationalizing of sparsity.
Convex optimization.
Useful shrinkage behaviour with good predictive properties.

Disadvantages:
Arbitrary implementation of sparsity
based on coincidence geometry of likelihood and penalty.
Not invariant to scale transformations.
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Principled idea: Likelihood Sparsity
Let β(γ0) = 0 or β(γ0) = (β̂0, 0) be a sparse starting point.

Idea: define sparse solution path β(γ)
as to increase ` as fast as possible
independent from scale (work with angles, rather than vectors).

Needed:
Angles ρm for each non-active variable xm at current fβ ∈M
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Survival models
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The Hazard function

T : (absolutely) continuous random variable associated with the
survival time.

f (t) probability density function of T.

Hazard function:
λ(t) = f (t)

1−
∫ t

0 f (s)ds
,

Interpretation: Instantaneous rate at which failures occur for
subjects that are surviving until time t.
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Relative Risk regression model

AIM: model hazard at any time t given expression profile X.

Suppose that λ(t) depends on a p-dimensional vector of covariates

x(t) = (x1(t), . . . , xp(t))T .

Relative risk regression models

λ(t; x) = λ0(t)ψ(x(t); β),

λ0(t): base hazard function at time t.
β ∈ B ⊆ Rp: p-dimensional vector of unknown fixed parameters
ψ : R → R: twice continuously differentiable (relative risk function).
B is such that ψ(x(t); β) > 0 for each β ∈ B.

When ψ(x(t); β) = exp(βTx(t)) → Cox regression (Cox, 1972).
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Partial Likihood

n: observations
t f
i : failure times (i = 1, . . . , n).
ti : observation times (i = 1, . . . , n).
D: set of indices i for which failure time is observed, i.e.,

ti = t f
i .

R(t): the risk set, i.e.

R(t) = {i | ti > t}.

Inference on β depends on partial likelihood function (Cox, 1972):

`p(β) =
∏
i∈D

ψ(xi (ti ); β)∑
j∈R(ti ) ψ(xj(ti ); β) .

PS. Maximum likelihood β̂ is not available when p > n
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From `p(β) to a GLM

Consider i ∈ D (observed failure times).
Assume Yi = (Yih)h∈R(ti ) is a Multinomial random variable such that:

Sample size equal to 1.
Cell probabilities πi = (πih)h∈R(ti ) ∈ Πi .
i.e. p(y; πi ) =

∏
h∈R(ti ) π

yih
ih , where

∑
h∈R(ti ) yih = 1.

Model space (for independent Yi)

S =

∏
i∈D

∏
h∈R(ti )

πyih
ih : (πi )i∈D ∈

⊗
i∈D

Πi

 .
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From `p(β) to a GLM

Fix the expected value of Yi

Eβ(Yih) = πih(β)

:= ψ(xh(ti ); β)∑
j∈R(ti ) ψ(xj(ti ); β) ,

Model space

S =

∏
i∈D

∏
h∈R(ti )

πih
yih : (πi )i∈D ∈

⊗
i∈D

Πi

 .
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Model space
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From `p(β) to a GLM

M =

∏
i∈D

∏
h∈R(ti )

(
ψ(xh(ti ); β)∑

j∈R(ti ) ψ(xj(ti ); β)

)yih

: β ∈ B

 .
Let

yih =
{

1 if h = i
0 otherwise

Then

∏
i∈D

∏
h∈R(ti )

(
ψ(xh(ti ); β)∑

j∈R(ti ) ψ(xj(ti ); β)

)yih

=
∏
i∈D

ψ(xh(ti ); β)∑
j∈R(ti ) ψ(xj(ti ); β) = `p(β)

Likelihood associatedM is equivalent to partial likelihood `p(β).

Ernst Wit Sparse surival models



From `p(β) to a GLM

M =

∏
i∈D

∏
h∈R(ti )

(
ψ(xh(ti ); β)∑

j∈R(ti ) ψ(xj(ti ); β)

)yih

: β ∈ B

 .
Let

yih =
{

1 if h = i
0 otherwise

Then

∏
i∈D

∏
h∈R(ti )

(
ψ(xh(ti ); β)∑

j∈R(ti ) ψ(xj(ti ); β)

)yih

=
∏
i∈D

ψ(xh(ti ); β)∑
j∈R(ti ) ψ(xj(ti ); β) = `p(β)

Likelihood associatedM is equivalent to partial likelihood `p(β).

Ernst Wit Sparse surival models



Bit of differential geometry

Ernst Wit Sparse surival models



Partial likelihood `p(β) is a manifold

M =

∏
i∈D

∏
h∈R(ti )

(
ψ(xh(ti ); β)∑

j∈R(ti ) ψ(xj(ti ); β)

)yih

: β ∈ B

 .

M is model space (model earth):
Resembles locally a Euclidean space (Amari, 1982; Vos, 1991) .
Inner product is the Fisher Information.
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First view of TfM...
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Angles in a Relative Risk regression model

The angle ρm between tangent residual vector and ∂m`(µ):

∂m`(µ) = 〈∂m`(µ), r(µ)〉fµ
= cos (ρm) · ‖r(µ)‖fµ · ‖∂m`(µ)‖fµ
= cos (ρm) · ‖r(µ)‖fµ · i1/2

m (µ),

then we obtain:
ρm = arccos ∂m`(µ)

‖r(µ)‖fµ · i
1/2
m (µ)

.

where
ρm is angle between r(µ) and ∂m`(µ).
im(µ) is the expected Fisher information for βm

‖ · ‖fµ is the norm defined on TfµF .

Note: Gradient of log-likelihood function is not sufficient!
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Method (Differential geometric Relative Risk)

Step Algorithm
1 start with intercept only model
2 repeat

3 increase parameters of active variables keeping angles
between their scores and residual tangent vector same

4 if angle of not-included variable is same as those
currently in model, include that variable in active set

5 until a stopping rule is met
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Including first x1, then x2...
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Rao score statistic

Let’s return to following differential geometric identity

ρm = arccos ∂m`(µ)
‖r(µ)‖fµ · i

1/2
m (µ)

Note: ‖r(µ)‖fµ does not depend on m!

So, equivalently we can use Rao score statistic:

ru
m(β) = ∂m`(µ)

i1/2
m (µ)

.

The larger ru
m(β), the smaller ρm, the better!
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1. Simulation study: ROC curve
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DgCox is best when there are (large) correlation among the predictors →
Most real cases!
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2. Diffuse large-B-cell lymphoma dataset (DLBCL)

Survival times of 240 patients.

Gene expression measurements on 7399 genes after chemotherapy.

Missing data imputed via k-nearest neighbours.

Aim: molecular predictor model of survival after chemo.
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Model selection

BIC
BIC(β̂, γ) = −2 `p(β̂(γ)) + log(n)df ,

AIC
BIC(β̂, γ) = −2 `p(β̂(γ)) + 2df ,

Derivation of the GIC using M-estimators

GIC .aic(β̂, γ) = −2 `p(β̂(γ)) + tr(R−1(β̂, γ)Q(β̂, γ)),

(Completely different) GIC proposed in Fan (2013)
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Paths and selected model
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Selected genes (GIC.aic)
X4131(-0.080), X5054(-0.079), X5172 (0.0012), X6321(0.0253).
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3. Real data validation

We consider four recent studies on cancer survival:

Cancer n # uncen p # genes sel. Ref.
Prostate 61 24 162 33 Ross et al (2012)
Ovarian 103 57 306 48 Gillet et al. (2012)
Skin 54 47 30807 44 Jonsson et al. (2010)
Colon 125 70 23698 62 Loboda et al. (2011)
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Prostate cancer and Ovarian cancer survival
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Figure: Performance on independent test data:

Prostate data: n = 61, p = 162, psel = 33, p-value = 0.03
Ovarian data: n = 103, p = 306, psel = 48, p-value = 0.01
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Skin cancer and Colon cancer survival
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Figure: Performance on independent test data:

Skin data: n = 54, p = 30,807, psel = 44, p-value = 0.07
Colon data: n=125, p = 23,698, psel = 62, p-value = 0.02
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Concluding remarks

Sparse survival modelling is often ad hoc.

Sparse parameter walks on survival likelihood are
I intuitively appealing;
I computationally feasible (Augugliaro et al. 2014, JSS);
I theoretically sound (Augugliaro et al. 2013, JRSS-B);
I methodologically extendible (Augugliaro et al. 2016, Biometrika);

Our method outperforms existing sparse Cox regression techniques.

Method will soon be available in R from package dglars.
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IWSM 2017: 2-7 July 2017, Groningen, the Netherlands

Keynote speakers: Laura Sangalli, Tom Snijders, Jelle Goeman...
No parallel sessions!
Website: http://iwsm2017.webhosting.rug.nl/
3-page abstract submission before January 30, 2017
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Computational considerations
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dgLARS as a Z -estimator
Assume: first k predictors and intercept included in A.

Sparse estimator β̂ is solution of following system:
ru
0 (β) = 0
ru
1 (β)− γv1 = 0
...

...
ru
k (β)− γvk = 0

where vm = sign(ru
m(β)).

Method computes finite sequence of transition points,

0 ≤ γ(K) ≤ . . . ≤ γ(2) ≤ γ(1),

s.t. for each γ(k) one of two things can occur:
Inclusion condition:

∣∣∣ru
q (β̂)

∣∣∣ = γ(k), with q /∈ A

Exclusion condition: sign(ru
m(β̂))) 6= sign(β̂m) with m ∈ A
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Model selection

AIC/GIC have slightly liberal, but overall good performance.
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