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Outline of presentation

1 What is the Regression Discontinuity Design?

– Brief intro
– Sharp vs Fuzzy RD
– Assumptions

2 RD design applied to statin prescriptions in THIN data

– Bayesian modelling
– Simulations
– Some results

3 Further work & conclusions
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What is the RD design?

• The regression discontinuity (RD) design was first introduced in the
educational econometrics literature in the 1960’s (Thistlethwaite and
Campbell, 1960)

• The RD design has not been extensively treated in the epidemiology
literature
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What is the RD design?

• The regression discontinuity (RD) design was first introduced in the
educational econometrics literature in the 1960’s (Thistlethwaite and
Campbell, 1960)

• The RD design has not been extensively treated in the epidemiology
literature

• Recently other econometricians have become interested in formal causal
aspects (Imbens and Lemieux, 2008; van der Klaauw, 2008)

• The original idea was to exploit policy thresholds to estimate the causal effect
of an educational intervention
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What is the RD design?

Education example

• We want to quantify the effect of going to college on future income

• Comparing the income of individuals who attended college and those who did
not will not provide us with the effect of college attendance alone

– Confounders such as social class, ability, motivation etc will make this difficult

• That is a classic problem of observational studies
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Education example

• We want to quantify the effect of going to college on future income

• Comparing the income of individuals who attended college and those who did
not will not provide us with the effect of college attendance alone

– Confounders such as social class, ability, motivation etc will make this difficult

• That is a classic problem of observational studies

• Often college scholarships are given on the basis of grades obtained in final
school examinations, eg if the average exam grade is above 75%, the student
gets a scholarship

• Suppose one student has an average of 74% and another an average of 76%:

– Can we really consider them as coming from different populations especially if
in other respects (eg family income etc) they are the same?

– Given that there is natural variability in exam performance even for the same
individual?
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What is the RD design?

Public health example

• Many medicines are prescribed according to a particular guideline

– Antiretroviral HIV drugs prescribed when patient’s CD4 count is less than 200
cells/mm3

– Blood pressure medication is prescribed when patient’s BP is 140/90mmHg or
above

– Statins are prescribed when eg 10 year Framingham risk score is over 20%
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What is the RD design?

Public health example

• Many medicines are prescribed according to a particular guideline

– Antiretroviral HIV drugs prescribed when patient’s CD4 count is less than 200
cells/mm3

– Blood pressure medication is prescribed when patient’s BP is 140/90mmHg or
above

– Statins are prescribed when eg 10 year Framingham risk score is over 20%

• Consider a population of HIV patients and suppose patient A has a CD4
count of 195 and patient B has a count of 205 cells/mm3

• Theoretically, patient A gets the drugs while patient B does not

• Can we really consider them as coming from different populations?

– If the two are the same in every other relevant respect (eg individual
circumstances etc)

– Given that there is a natural variability in CD4 counts and in the instruments
used to measure them?
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RD design and confounding

Sharp Design

• The idea of the RD design is that the threshold behaves like a randomising
device

• If we imagine that the thresholds are adhered to very strictly (which is
usually termed sharp design), then we can think of the RD design as
removing the confounding due to unobserved factors, eg

– Academic history, talent, motivation
– Unobserved health/personal characteristics
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RD design and confounding

Sharp Design

• The idea of the RD design is that the threshold behaves like a randomising
device

• If we imagine that the thresholds are adhered to very strictly (which is
usually termed sharp design), then we can think of the RD design as
removing the confounding due to unobserved factors, eg

– Academic history, talent, motivation
– Unobserved health/personal characteristics

Fuzzy Design

• Particularly in public health contexts the sharp threshold is unlikely to be
adhered to (a situation termed fuzzy design)

• For example, often GPs override guidelines — generally because, contrary to
their recommendations, they feel that patients will benefit from medication

– Links with economic theory of asymmetric information
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RD design and confounding

Sharp RD Fuzzy RD

X C

Z T Y

X C

Z T Y

• X = guideline variable (eg cardiovascular risk score)

• Z = threshold indicator (ie Z = 1 if X > x0 and 0 otherwise)

• T = treatment administered (prescribed)

• C = (O ∪U) = set of confounders

– O fully observed (eg sex, age)
– U fully or partially unobserved (eg smoking status)

• Y = continuous outcome (eg LDL cholesterol level)
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The RD design — assumptions

A1. Association of treatment with the threshold indicator : Z 6⊥⊥T

– Can be directly tested from the observed data
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The RD design — assumptions

A1. Association of treatment with the threshold indicator : Z 6⊥⊥T

– Can be directly tested from the observed data

A2. Independence of guidelines: Z⊥⊥C

– Generally plausible, as the threshold is set by the powers-that-be, eg
governmental agencies

– NB: This assumption does not necessarily hold in its “strong” form, as
prescription can be done according to some extra criteria. In this case, a
“weaker” form can be used to imply Z⊥⊥U | O
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A1. Association of treatment with the threshold indicator : Z 6⊥⊥T

– Can be directly tested from the observed data

A2. Independence of guidelines: Z⊥⊥C

– Generally plausible, as the threshold is set by the powers-that-be, eg
governmental agencies

– NB: This assumption does not necessarily hold in its “strong” form, as
prescription can be done according to some extra criteria. In this case, a
“weaker” form can be used to imply Z⊥⊥U | O

A3. Unconfoundedness: Y⊥⊥Z | (T,X,C)

– Implies that the individuals just above and below the threshold are “similar”
(exchangeable)

– This assumption is violated if individuals can change their outcome to fall on
either side (eg benefit fraud: individuals might say their income is below a
threshold in order to fall into a category that receives benefits)

– NB: this assumption can be expressed equivalently by considering the
threshold as a randomising device, thus a comparison of above and below
gives us a causal effect estimate of the treatment, at the threshold
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The RD design — assumptions (cont’d)
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The RD design — assumptions (cont’d)

• But: how far above and below the threshold?
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The RD design — assumptions (cont’d)

A4. Continuity : E(Y | Z,X = x,C) is continuous in x (at x0) for T = 0, 1
– We can fit two separate regressions, one above and one below the threshold;

or can assume a common slope and fit one regression (this assumes effect is
the same everywhere)
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The RD design — assumptions (cont’d)

A4. Continuity : E(Y | Z,X = x,C) is continuous in x (at x0) for T = 0, 1
– We can fit two separate regressions, one above and one below the threshold;

or can assume a common slope and fit one regression (this assumes effect is
the same everywhere)

Marginal conditional expectation E(Y | X)
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The causal effect

The continuous case: Sharp threshold

• Let Y be the outcome, Xc the centered assignment variable and T the
treatment indicator

• If the regressions are given by

E(Yl) = β0l + β1lX
c
l

and:

– xc

0 = 0 is the value of Xc

l at the threshold;
– l = b ⇒ Xc

l < xc

0 (below)
– l = a ⇒ Xc

l ≥ xc

0 (above)

then an estimate of the causal effect of the treatment is

ATE = E(Y |T = 1)− E(Y |T = 0)

= β0a − β0b := ∆β
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The causal effect

The continuous case: Fuzzy threshold

• In this case, we also need to consider the threshold indicator, Z

• The formula for the fuzzy estimator is

LATE =
E(Y |Z = 1)− E(Y |Z = 0)

E(T |Z = 1)− E(T |Z = 0)

=
β0a − β0b

πa − πb

:=
∆β

∆π

where πl is an estimate of Pr(T = 1|Z = z), eg the chance of being treated
when above or below the threshold

• πl can be based on the raw frequencies (not recommended!) or modelled
more formally

• LATE is based on the compliance literature (Dawid, 2003)
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RD design and “compliance”

• In applications of the RD design in the GP prescription context there are two
layers of compliance

1 Adherence of GPs to prescription guidelines (ie only give the antiretroviral
drug to patients with CD4 count below 200 cells/mm3)

2 Compliance of patients to prescription (ie always take the antiretroviral drug
twice a day every day)
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RD design and “compliance”

• In applications of the RD design in the GP prescription context there are two
layers of compliance

1 Adherence of GPs to prescription guidelines (ie only give the antiretroviral
drug to patients with CD4 count below 200 cells/mm3)

2 Compliance of patients to prescription (ie always take the antiretroviral drug
twice a day every day)

• NB: the RD design is related to compliance of the first type

• The RD’s relationship with compliance means that, in its standard form, it is
also related to intention-to-treat experiments

• Nevertheless, both types can be taken into account by specifying the analysis
methods

– Links to Bayesian models to specify informative priors and/or selection models
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The RD design — assumptions (cont’d)

A5. Monotonicity (fuzzy design only)

– No decision-maker systematically defies the guidelines
– For example, if we consider a pair of binary strategies (Sa, Sb) for above and

below the threshold, this is equivalent to assuming that

Pr(Sa = 0, Sb = 1) = 0

– This has links with the counterfactual framework (eg “no defiers”), but can be
re-framed in a fully decision-theoretic setting
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The RD design — assumptions (cont’d)

A5. Monotonicity (fuzzy design only)

– No decision-maker systematically defies the guidelines
– For example, if we consider a pair of binary strategies (Sa, Sb) for above and

below the threshold, this is equivalent to assuming that

Pr(Sa = 0, Sb = 1) = 0

– This has links with the counterfactual framework (eg “no defiers”), but can be
re-framed in a fully decision-theoretic setting

NB: In the case of our example, this is probably less problematic

– Unlike patients, GPs should be more aware of the current guidelines and
decide in a more rational way

– It is possible that they decide to overrule the guideline (for good reasons!) but
on average they should reasonably follow them

– Patients compliance is a more difficult issue!
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Case study: prescription of statins
• Statins are a class of drugs used to lower cholesterol and prescribed to
prevent heart disease

– Trials show an average reduction of LDL cholesterol of ≈ 2 mmol/l (Ward
et al., 2007)

• UK NHS guidelines are to prescribe statins to individuals without previous
CVD if their 10 year CVD score exceeds 20% (NICE, 2008)
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Case study: prescription of statins
• Statins are a class of drugs used to lower cholesterol and prescribed to
prevent heart disease

– Trials show an average reduction of LDL cholesterol of ≈ 2 mmol/l (Ward
et al., 2007)

• UK NHS guidelines are to prescribe statins to individuals without previous
CVD if their 10 year CVD score exceeds 20% (NICE, 2008)

• Objective: use the RD design to evaluate

– Whether the effect of statins is the same as in the trials
– Whether the threshold is currently set at the point in which most patients

have the highest benefit. This has also clear health economic implications

G. Baio, S. Geneletti, A. O’Keeffe ( UCL/LSE) Bayesian RDD in Epidemiology LSHTM Seminar, 29 Nov 2013 16 / 32



Case study: prescription of statins
• Statins are a class of drugs used to lower cholesterol and prescribed to
prevent heart disease

– Trials show an average reduction of LDL cholesterol of ≈ 2 mmol/l (Ward
et al., 2007)

• UK NHS guidelines are to prescribe statins to individuals without previous
CVD if their 10 year CVD score exceeds 20% (NICE, 2008)

• Objective: use the RD design to evaluate

– Whether the effect of statins is the same as in the trials
– Whether the threshold is currently set at the point in which most patients

have the highest benefit. This has also clear health economic implications

• Data: Simulation study, based on a real clinical practice database containing
routine GP prescriptions as well as information on the variables that
determine them

– Individual characteristics (sex, date of birth, date of registration, proxies of
socioeconomic status)

– Medical history (GP visits, prescriptions, exams)
– Relevant clinical outcomes (LDL level, CHD events, deaths)
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Going Bayesian

There are several reasons for framing the problem within the Bayesian approach
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Going Bayesian

There are several reasons for framing the problem within the Bayesian approach

• Stabilising the estimators

– The denominator of LATE can be very small (ie πa ≈ πb)
– Informative priors on the relevant parameters can encode knowledge and

assumptions about these two probabilities so that the resulting estimator does
not explode to ∞
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There are several reasons for framing the problem within the Bayesian approach

• Stabilising the estimators

– The denominator of LATE can be very small (ie πa ≈ πb)
– Informative priors on the relevant parameters can encode knowledge and

assumptions about these two probabilities so that the resulting estimator does
not explode to ∞

• Computational advantages

– Estimation of variances and intervals does not rely on asymptotics — just a
byproduct of MCMC procedures
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Going Bayesian

There are several reasons for framing the problem within the Bayesian approach

• Stabilising the estimators

– The denominator of LATE can be very small (ie πa ≈ πb)
– Informative priors on the relevant parameters can encode knowledge and

assumptions about these two probabilities so that the resulting estimator does
not explode to ∞

• Computational advantages

– Estimation of variances and intervals does not rely on asymptotics — just a
byproduct of MCMC procedures

• Expand the model to include extra information & deal with the two levels of
compliance

– For example, logistic regression models to explain the treatment assignment in
terms of practice-level covariates

– Mixture models to include individual level covariates to account for proxies of
compliance with treatment
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Going Bayesian

There are several reasons for framing the problem within the Bayesian approach

• Stabilising the estimators

– The denominator of LATE can be very small (ie πa ≈ πb)
– Informative priors on the relevant parameters can encode knowledge and

assumptions about these two probabilities so that the resulting estimator does
not explode to ∞

• Computational advantages

– Estimation of variances and intervals does not rely on asymptotics — just a
byproduct of MCMC procedures

• Expand the model to include extra information & deal with the two levels of
compliance

– For example, logistic regression models to explain the treatment assignment in
terms of practice-level covariates

– Mixture models to include individual level covariates to account for proxies of
compliance with treatment

• Cooler!
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Models for the ATE

• We model LDL cholesterol (y) as a function of the threshold indicator

yil ∼ Normal(µil, σ
2)

µil = β0l + β1lx
c
il

⇒ ATE = ∆β = β0a − β0b
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• We model LDL cholesterol (y) as a function of the threshold indicator

yil ∼ Normal(µil, σ
2)

µil = β0l + β1lx
c
il

⇒ ATE = ∆β = β0a − β0b

• We choose a weakly informative prior for the individual sd: σ ∼ Uniform(0, 5)

– Especially with (at least moderately) large datasets, likely to not affect
posteriors by much

– Genuine information or other form can be used
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Models for the ATE

• We model LDL cholesterol (y) as a function of the threshold indicator

yil ∼ Normal(µil, σ
2)

µil = β0l + β1lx
c
il

⇒ ATE = ∆β = β0a − β0b

• We choose a weakly informative prior for the individual sd: σ ∼ Uniform(0, 5)

– Especially with (at least moderately) large datasets, likely to not affect
posteriors by much

– Genuine information or other form can be used

• Then we model the coefficients for the regression below the threshold as

β0b ∼ Normal(m0, s
2

0
) and β1b ∼ Normal(m1b, s

2

1b)

– The parameters (m0, s
2

0) and (m1b, s
2

1b) are chosen to induce reasonable
values for the estimated LDL in correspondence with centered risk scores in
the range [−0.2; 0]
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Models for the ATE (cont’d)

Estimated prior predictive distribution of LDL cholesterol
 for a patient whose risk score = 0

LDL level (mmol/l)
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Estimated prior predictive distribution of LDL cholesterol
 for a patient whose risk score = 0.199
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NB: The selected values are m0 = 3.7, m1b = 8 and s0 = 0.5
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Models for the ATE (cont’d)

• Finally we model the coefficients for the regression below the threshold as

β0a = β0b + φ and β1a ∼ Normal(m1a, s
2

1a)

– The parameters of β1a encode the assumption for individuals with very high
risk score, the effect is marginally lower than for those closer to the threshold

– φ is the “jump” due to the causal effect of the treatment
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Models for the ATE (cont’d)

• Finally we model the coefficients for the regression below the threshold as

β0a = β0b + φ and β1a ∼ Normal(m1a, s
2

1a)

– The parameters of β1a encode the assumption for individuals with very high
risk score, the effect is marginally lower than for those closer to the threshold

– φ is the “jump” due to the causal effect of the treatment

• Weakly informative prior: φ ∼ Normal(0, 2)

– “Sketpical” prior on the effect of treatment, which is assumed to be null
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Models for the ATE (cont’d)

• Finally we model the coefficients for the regression below the threshold as

β0a = β0b + φ and β1a ∼ Normal(m1a, s
2

1a)

– The parameters of β1a encode the assumption for individuals with very high
risk score, the effect is marginally lower than for those closer to the threshold

– φ is the “jump” due to the causal effect of the treatment

• Weakly informative prior: φ ∼ Normal(0, 2)

– “Sketpical” prior on the effect of treatment, which is assumed to be null

• Strongly informative prior: φ ∼ Normal(−2, 1)

– “Enthusiastic” prior, strongly based on the available information coming from
the RCTs (reduction of 2 mmol/l)

– Relatively small variance to represent strong belief in the trials
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Models for the ATE (cont’d)

• Finally we model the coefficients for the regression below the threshold as

β0a = β0b + φ and β1a ∼ Normal(m1a, s
2

1a)

– The parameters of β1a encode the assumption for individuals with very high
risk score, the effect is marginally lower than for those closer to the threshold

– φ is the “jump” due to the causal effect of the treatment

• Weakly informative prior: φ ∼ Normal(0, 2)

– “Sketpical” prior on the effect of treatment, which is assumed to be null

• Strongly informative prior: φ ∼ Normal(−2, 1)

– “Enthusiastic” prior, strongly based on the available information coming from
the RCTs (reduction of 2 mmol/l)

– Relatively small variance to represent strong belief in the trials

• We term the resulting ATE estimators obtained under the two different
formulations as ∆wip

β and ∆sip
β
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Models for the denominator of the LATE

• Model the (sum of the) treatment indicator, for l = a, b

nl∑

i=1

til ∼ Binomial(πl, nl) ⇒ ∆π = πa − πb and LATE =
∆β

∆π
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Models for the denominator of the LATE

• Model the (sum of the) treatment indicator, for l = a, b

nl∑

i=1

til ∼ Binomial(πl, nl) ⇒ ∆π = πa − πb and LATE =
∆β

∆π

1 Unconstrained prior πl ∼ Beta(1, 1) — the resulting estimator is ∆unc
π

2 Fixed difference prior (∆fix
π )

πb ∼ Beta(αb, βb) with βb = (nb + 1) ⇒ all untreated below

πa ∼ Beta(αa, βa) with βa = 1 ⇒ all treated above

αb ∼ Uniform(1, U) for a large value U (eg 10 000)

αa = ν + αb with ν ∼ Uniform(200, 10 000)

NB: implies at least 200 more subjects are treated above than below
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• Model the (sum of the) treatment indicator, for l = a, b

nl∑

i=1

til ∼ Binomial(πl, nl) ⇒ ∆π = πa − πb and LATE =
∆β

∆π

1 Unconstrained prior πl ∼ Beta(1, 1) — the resulting estimator is ∆unc
π

2 Fixed difference prior (∆fix
π )

πb ∼ Beta(αb, βb) with βb = (nb + 1) ⇒ all untreated below

πa ∼ Beta(αa, βa) with βa = 1 ⇒ all treated above

αb ∼ Uniform(1, U) for a large value U (eg 10 000)

αa = ν + αb with ν ∼ Uniform(200, 10 000)

NB: implies at least 200 more subjects are treated above than below

3 Flexible difference prior (∆fdp
π )

θa ∼ Normal(2, 1), θb ∼ Normal(−2, 1), πl =
exp(θl)

1 + exp(θl)

NB: implies that the denominator is centered around far from 0 but can vary
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Models for the denominator of the LATE (cont’d)

Prior density estimates for probability of treatment
 above and below the threshold

Probability of treatment

D
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si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
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4
5
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Below Threshold
Above Threshold
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Simulation study

We simulated data based on real clinical practice data (from THIN) and
considered three levels of uncertainty

1 Unobserved confounding

– We use HDL cholesterol as an unobserved confounder and modify the strength
of the relationship with the outcome (LDL cholesterol)

– We consider 4 levels: 1 = low, . . ., 4 = high
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considered three levels of uncertainty

1 Unobserved confounding

– We use HDL cholesterol as an unobserved confounder and modify the strength
of the relationship with the outcome (LDL cholesterol)

– We consider 4 levels: 1 = low, . . ., 4 = high

2 Threshold as instrumental variable

– We consider the threshold x0 as either a strong or weak instrument

3 Bandwith around the threshold

– The bandwith determines the sample size used for the local regressions
– Smaller bandwidths imply smaller sample size, although exchangeability on

either side of the threshold is more likely to hold
– Larger bandwidths increase the sample size, but include observations that

potentially violate exchangeability
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Simulation study

We simulated data based on real clinical practice data (from THIN) and
considered three levels of uncertainty

1 Unobserved confounding

– We use HDL cholesterol as an unobserved confounder and modify the strength
of the relationship with the outcome (LDL cholesterol)

– We consider 4 levels: 1 = low, . . ., 4 = high

2 Threshold as instrumental variable

– We consider the threshold x0 as either a strong or weak instrument

3 Bandwith around the threshold

– The bandwith determines the sample size used for the local regressions
– Smaller bandwidths imply smaller sample size, although exchangeability on

either side of the threshold is more likely to hold
– Larger bandwidths increase the sample size, but include observations that

potentially violate exchangeability

Also, we consider several versions of the ATE and LATE, upon varying the prior
distributional assumptions selected
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“Descriptive” analysis — useful plots
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Results

Bandwidth = 0.25, Treatment effect size ∼ Normal(−2, 0.52)

LATE estimation (Strong IV)
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Results (cont’d)

Bandwidth = 0.05, Treatment effect size ∼ Normal(−2, 0.52)
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Results (cont’d)

Bandwidth = 0.25, Treatment effect size ∼ Normal(−2, 0.52)

Splines LATE estimator (Strong IV)
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Conclusions

• The flexible prior does well in recovering the treatment effect when the
conditions to apply the RD are valid

– It is as good as the other estimators for low confounding (even if weak IV) or
if strong IV (even if confounding is high)

– It does not work when the instrument is weak and confounding is high
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– It is as good as the other estimators for low confounding (even if weak IV) or
if strong IV (even if confounding is high)

– It does not work when the instrument is weak and confounding is high

• The fixed prior can nearly always recover a sensible result

– But of course this is strongly influenced by the very strict prior
– It fails to flag scenarios when the RD is not applicable, as the strong prior still

induces “reasonable” results
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Conclusions

• The flexible prior does well in recovering the treatment effect when the
conditions to apply the RD are valid

– It is as good as the other estimators for low confounding (even if weak IV) or
if strong IV (even if confounding is high)

– It does not work when the instrument is weak and confounding is high

• The fixed prior can nearly always recover a sensible result

– But of course this is strongly influenced by the very strict prior
– It fails to flag scenarios when the RD is not applicable, as the strong prior still

induces “reasonable” results

• Care is needed in applying “flexible” models (eg splines)

– They can be too flexible and can adapt too well to the idiosyncrasies of the
data, resulting in very variable estimations
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Thank you!
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Results
Bandwidth = 0.05, Treatment Effect Size ∼ Normal(−2, 0.52)

ATE Estimators LATE Estimators

IV Confounding ∆
freq
β

∆
sip
β

LATEunct LATEflex LATEcnst Spline

Strong 1 -1.74 -2.15 -2.42 -2.42 -2.41
(-1.98, -1.50) (-2.25, -2.05) (-2.54, -2.29) (-2.55, -2.29) (-2.54, -2.29)

2 -1.43 -1.86 -2.51 -2.52 -2.51
(-1.67, -1.19) (-1.97, -1.76) (-2.68, -2.35) (-2.68, -2.35) (-2.69, -2.35)

3 -0.72 -1.20 -2.88 -2.88 -2.32
(-1.08, -0.36) (-1.32, -1.09) (-3.24, -2.54) (-3.25, -2.54) (-2.58, -2.08)

4 -0.92 -1.45 -2.61 -2.61 -2.29
(-1.26, -0.58) (-1.57, -1.33) (-2.87, -2.36) (-2.87, -2.36) (-2.51, -2.08)

Weak 1 -1.01 -1.44 -2.73 -2.72 -2.29
(-1.31, -0.72) (-1.55, -1.33) (-3.01, -2.46) (-3.00, -2.45) (-2.49, -2.09)

2 -1.08 -1.53 -2.67 -2.67 -2.32
(-1.33, -0.84) (-1.63, -1.42) (-2.93, -2.43) (-2.92, -2.43) (-2.51, -2.14)

3 0.05 -0.36 33.87 -66.28 -2.10
( -0.16, 0.25) ( -0.46, -0.26) (-944.90, 657.63) (-293.68, 58.97) ( -2.77, -1.48)

4 0.08 -0.36 -104.83 -53.01 -2.05
( -0.13, 0.29) ( -0.46, -0.26) (-426.90, 243.85) (-154.97, 4.56) ( -2.72, -1.43)

Bandwidth = 0.25, Treatment Effect Size ∼ Normal(−2, 0.52)
ATE Estimators LATE Estimators

IV Confounding ∆
freq
β

∆
sip
β

LATEunct LATEflex LATEcnst Spline

Strong 1 -2.02 -2.17 -2.46 -2.46 -2.46 -3.47
(-2.17, -1.86) (-2.26, -2.08) (-2.57, -2.35) (-2.57, -2.35) (-2.57, -2.35) (-8.97, 1.05)

2 -1.68 -1.87 -2.54 -2.55 -2.54 -2.41
(-1.86, -1.51) (-1.96, -1.78) (-2.68, -2.41) (-2.69, -2.41) (-2.69, -2.41) (-6.52, 1.83)

3 -0.95 -1.20 -2.37 -2.38 -2.23 -4.04
(-1.27, -0.62) (-1.30, -1.10) (-2.59, -2.16) (-2.60, -2.16) (-2.44, -2.03) (-27.14, 10.67)

4 -1.19 -1.46 -2.32 -2.32 -2.24 -3.06
(-1.48, -0.90) (-1.57, -1.36) (-2.50, -2.14) (-2.50, -2.14) (-2.41, -2.07) (-18.03, 6.97)

Weak 1 -1.25 -1.46 -2.48 -2.48 -2.26 -3.13
(-1.46, -1.03) (-1.56, -1.36) (-2.67, -2.29) (-2.67, -2.29) (-2.42, -2.09) (-11.34, 3.76)

2 -1.31 -1.53 -2.54 -2.54 -2.32 -5.82
(-1.45, -1.16) (-1.63, -1.44) (-2.73, -2.36) (-2.72, -2.36) (-2.47, -2.16) (-20.63, 8.63)

3 -0.20 -0.35 -45.08 -40.60 -4.77 -1.61
( -0.31, -0.08) ( -0.44, -0.26) (-79.69, -25.96) (-76.06, -20.20) ( -6.18, -3.47) (-22.48, 19.06)

4 -0.15 -0.35 -24.12 -23.33 -4.31 -0.74
( -0.27, -0.03) ( -0.44, -0.25) (-36.52, -15.34) (-35.53, -14.60) ( -5.62, -3.09) (-22.74, 21.13)
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