CACE – Complier-average Causal Effect using Mplus: theoretical and practical issues

Hugo Cogo-Moreira – Federal University of Sao Paulo Department of Psychiatry Traditional analysis in Randomized Clinical Trials (RCT)

 Standard Intention-to-treat (ITT) – estimates treatment effect in the presence of noncompliance

• Overall average treatment effect

 ITT does not represent treatment efficacy under noncompliance (non-adherence)

Subpopulation in RCT

- Four potential compliance status (Angrist et al., 1996)
 - Compliers receive treatment only if they are assigned to the treatment condition;
 - Never-takers do not receive the treatment even if they are assigned to the treatment condition
 - Defiers do the opposite of what they are assigned to do.
 - Always-takers always receive the treatment no matter which condition they are assigned to.

Where to apply? How does CACE work?

??Where??

• To estimate the effect of treatment when it is actually received

Assumptions for CACE

- Monotonicity (Imbens & Angrist, 1994);
 - No defiers
- Exclusion restriction assumption (Angrist 1996)
 - Never-takers and (always-taker*) receive identical treatment regardless of which treatment condition they are assigned to

 Treatment effects are estimates for complier and fixed at zero for the rest.

- **Unrealistic in some situations**
 - Dichotomize individuals as low compliers and high compliers

Creating groups (training data)

- c1 and c2 (dummy variable) which contain information on class membership.
 - CI = complier class
 - C2 = non-complier class

Intervention	Intervention
(complier)	(Non-complier)
Control	Control
(complier)	Non-complier)

cl=l	c2=1	Control Group
cl=l	c2=0	Complier
c1=0	c2=1	Non-Complier

An Example

- Children with reading difficulties
- Intervention Music Education three times per week in
- Sampling: 10 schools (5 intervention vs. 5 control) 24 children per school;
- Outcomes:
 - Primary: reading skills (eg., rate of correct read words per minute) (Pre and post-test)
 - Secondary: academic achievement in Portuguese subject. (four equidistant evaluation)

In Cluster RCT...

- Traditional way ITT (Standard hierarchical Model)
- Or in case of noncompliance
- Adjustment for the design effect or multilevel analysis techniques
 - > 30-50 clusters for multilevel modeling.
 - Alternatively, we can create a set of dummy variables to take into account the non-independence of observations due to clustering.

```
Modelling the input...
```

usevariables = gender age SAPT IQ_T nchild_class vis_acu accu_tx0 ACU_tx_2 interven_status cl c2;

classes = c (2);

training = clc2;

cluster = school;

analysis: type = complex mixture;

Algorithm=integration;

estimator = mlr*;

Continuing input...

Model:

Post-test

%overall% Pre-test(baseline)

CACE parameter

- acu_tx_2 ON acu_tx0other independent variables interven_status;
- c#I ON variables which would explain the complier/non-complier status (eg, age gender motivation);

%C#2% (Latent Group Non-Complier)
[acu_w_2];
acu_tx_2 on interven_status @0; effect is fixed at zero for noncompliers (exclusion restriction assumption)
Output: tech1 tech8;

But...in case of longitudinal studies...

%OVERALL%

is | port1@0 port2@1 port3@2 port4@3;

i s on interven_status portl;

%c#I%

i;s;

s on interven_status;

%c#2%

l;s;

s on interven_status@0;

Output: sampstat stand (stdyx)tech1 tech8;

Thanks

D

Email contact: <u>hugocogobr@gmail.com</u> or hugo.cogo@lshtm.ac.uk