

Network meta-analysis

LSHTM, 31st January 2014

Ian White MRC Biostatistics Unit, Cambridge, UK

MRC | Medical Research Council

Have you heard it all before?

No, thanks to:

Maurice Belz (1897–1975)

Plan

- Systematic review
- Meta-analysis
- Indirect comparisons
- Network meta-analysis
 - models allowing for heterogeneity
 - models allowing for inconsistency
 - model estimation
 - examples
 - controversies

Systematic review

- Define a clinical question
 - typically: how good is this intervention? (often drugs, but also e.g. psychological therapy)
- Obtain all papers relevant to the question using a systematic search strategy
 - typically restricted to randomised controlled trials (RCTs)
 - Record study characteristics including quality
 - Extract quantitative study results
 - If appropriate, perform a statistical summary

statistician's roles

See e.g.

- Egger M, Davey Smith G, Altman DG, editors. Systematic Reviews in Healthcare: Meta-analysis in Context (2001)
- The Cochrane Collaboration, http://www.cochrane.org/ MRC | Medical Research Council

this talk

Pairwise meta-analysis: data from 15 randomised trials

study	dA	nA	dC	nC
1	9	140	23	140
6	75	731	363	714
7	2	106	9	205
8	58	549	237	1561
9	0	33	9	48
10	3	100	31	98
11	1	31	26	95
12	6	39	17	77
13	95	1107	134	1031
14	15	187	35	504
15	78	584	73	675
16	69	1177	54	888
17	64	642	107	761
18	5	62	8	90
19	20	234	34	237

Aim is to compare effectiveness of individual counselling ("C") with no contact ("A") in helping smokers to quit.

Data in arm A, C:

- dA, dC = # who quit smoking
- nA, nC = # randomised

Source: Lu & Ades, JASA 2006; 101: 447-459.

Data display: Forest plot

Forest plot shows odds ratio (95% confidence interval) for C vs. A for each of the 15 studies.

Shaded blocks represent amount of information (area \propto 1/se²)

Pairwise meta-analysis: "fixed-effect" model

- Say we're interested in the log odds ratio
- Assume there is a "true log odds ratio" μ
- Express the results from study *i* as
 - y_i = estimated log odds ratio
 - s_i = its standard error
- Model: $y_i \sim N(\mu, s_i^2)$
 - approximation, valid for moderate/large counts
- (We are using a two-stage estimation procedure: compute the y_i, then estimate μ. We can also do onestage estimation – see later.)

Forest plot again

Note the high degree of heterogeneity between studies.

Ideally we'd explain it – e.g. if study 6 was in people who had just had a major diagnosis.

But often we need to model it instead.

Pairwise meta-analysis: random-effects model

- Model for "true log odds ratio in study i": $\mu_i \sim N(\mu, \tau^2)$
- Parameters of interest:
 - μ is the overall mean treatment effect
 - τ^2 is the between-studies (heterogeneity) variance
- Two-stage estimation procedure
- Model for point estimate: $y_i \sim N(\mu_i, s_i^2)$
 - y_i = estimated log odds ratio in study *i*
 - s_i = its standard error
- Estimate τ^2 (and hence μ) by
 - method of moments very popular
 - or restricted maximum likelihood (REML)

Forest plot showing meta-analysis result

The randomeffects analysis gives an estimate of the overall mean allowing for heterogeneity and a prediction interval (effect in a new study) 10

A note on terminology

- "Fixed-effect" is unfortunate terminology
- Elsewhere in statistics, "fixed effects" means lots of free parameters
- Could consider $y_i \sim N(\mu_i, s_i^2)$ with these 3 models:

Model	Standard name	Better name?
$\mu_i = \mu$	Fixed-effect	Common effect
$\mu_i \sim N(\mu,\tau^2)$	Random-effects	Random effects
μ_i all separate	(not used)	Fixed effects

Other issues in (pairwise) meta-analysis

- Study quality
- Study-level covariates → "meta-regression"
- Publication bias
 - small trials more likely to be published if they show statistically significant effects?
 - see next

Exploring publication bias: "funnel plot"

Actually the data are more complicated ...

study	dA	nA	dB	nB	dC	nC	dD	nD	
1	9	140			23	140	10	138	24
2			11	78	12	85	29	170	con
3	79	702	77	694					
4	18	671	21	535					aitt
5	8	116	19	146					inte
6	75	731			363	714			tok
7	2	106			9	205			
8	58	549			237	1561			sm
9	0	33			9	48			^ _
10	3	100			31	98			
11	1	31			26	95			con
12	6	39			17	77			
13	95	1107			134	1031			B=
14	15	187			35	504			C =
15	78	584			73	675			
16	69	1177			54	888			COU
17	64	642			107	761			<u> </u>
18	5	62			8	90			
19	20	234			34	237			COU
20	0	20					9	20	
21			20	49	16	43			
22			7	66			32	127	
23					12	76	20	74	
24					9	55	3	26	

trials npared 4 erent erventions help okers quit: "No itact" "Self help" "Individual nselling" "Group nselling"

Actually the data are more complicated ...

study	dA	nA	dB	nB	dC	nC	dD	nD	
1	9	140			23	140	10	138	We have trials
2			11	78	12	85	29	170	of different
3	79	702	77	694					docigne
4	18	671	21	535					designs.
5	8	116	19	146	262	74.4			• A vs C vs D
6	/5	/31			363	714			
/	۲ ۲۵	106 540			9 727	205			• BVSCVSD
9	0	33			237 Q	48			• $A v s B (x3)$
10	3	100			31	98			
11	1	31			26	95			• A vs C (x14)
12	6	39			17	77			
13	95	1107			134	1031			
14	15	187			35	504			 B vs C
15	78	584			73	675			
16	69	1177			54	888			• BVSD
17	64	642			107	761			• $C vs D(x2)$
18	5	62			8	90			
19	20	234			34	237			
20	0	20	2.0	10	1.0	40	9	20	
21			20	49	16	43	22	107	
22			/	66	10	76	32	127	15
23					12	/0	20	74	
24					9	22	3	20	

Evidence network: the smoking data

14 trials compared A with C "design AC" 1 trial compared A, C and D "design ACD"

etc.

Indirect comparisons

- Let's now focus on comparing B with C
- Evidence from B vs C and B vs C vs D trials is "direct evidence"
- Can we use indirect evidence to compare B with C?
 - e.g. combining A vs B trials with A vs C trials

 $\begin{array}{c}
 A \\
 3 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 C
\end{array}$

- where $\hat{\delta}_{BC}$ = effect of C compared to B, etc.

 But the assumptions are tricky: must assume the 3 designs (A vs B, A vs C, B vs C) are comparable

Bias in indirect comparisons (1)

- Suppose B and C are equally beneficial compared to A
 - B was trialled in the 1990s in a wide range of smokers
 - C was trialled in the 2000s in smokers who had failed in previous quit attempts
- So C is likely to show smaller benefit than B
- Quit rates might be:

Trial	Α	В	С
1990s	10%	20%	20%
2000s	10%	15%	15%

- But what if all 3 interventions had been tried?
- Can regard C in 1990s and B in 2000s as "missing groups" – and data are missing not at random

MRC | Medical Research Council

Bias in indirect comparisons (2)

• If the overall event rates differ, then there are also problems with the scale on which intervention effects are measured. Suppose:

	Smoking quit rates			Comparison with A		
Trial	А	В	С	Risk difference	Risk ratio	Odds ratio
A vs. B	20%	30%		+10%	1.50	1.71
A vs. C	10%		18%	+8%	1.80	1.98
				B best	C best	C best

Extrapolation problem – no easy answer

Network meta-analysis

- Despite these problems, I'll proceed to combine all the evidence – indirect and direct – in order to get our best estimates of the value of all the interventions
- This is called network meta-analysis
 - multiple treatments meta-analysis
 - mixed treatment comparisons
- Network meta-analysis addresses the real clinical question: which intervention is best for the patient?
 - may additionally require modelling covariates
- Much used by NICE (National Institute for Clinical Excellence) in comparing interventions
- See e.g. Salanti G, Higgins JP, Ades A, Ioannidis JP. Evaluation of networks of randomized trials. Statistical Methods in Medical Research 2008; 17: 279–301.

Aims of network meta-analysis

- 1. Use all the data & thus get
 - better estimates of treatment effects
 - opportunity to identify the best treatment
- 2. Assess whether the evidence is consistent
 - i.e. does the indirect evidence agree with the direct evidence?
- The main statistical challenges are
 - formulating and fitting models that allow for heterogeneity and inconsistency
 - assessing inconsistency and (if found) finding ways to handle it

Less-statistical challenges include defining the scope of the problem: which treatments to include, what patient groups, what outcomes

Models for network meta-analysis: consistency model (1)

A	True log odds in each group in trial i				
	Design	A	В	С	
	ABC	$lpha_i$	$\alpha_i + \mu_{iB}$	$\alpha_i + \mu_{iC}$	
	AB	$lpha_i$	$lpha_i + \mu_{iB}$	-	
C	AC	$lpha_i$	_	$\alpha_i + \mu_{iC}$	

- Trials have different baseline risks: no assumptions on α_i ("fixed effects" for trial)
- Between-trials model: $\mu_i = (\mu_{iB}, \mu_{iC}) \sim N(\mu, \Sigma)$
 - heterogeneity (variation between trials): Σ ≠ 0 ("random effects" for treatment*trial)
- Consistency: μ_i has same mean $\mu = (\mu_B, \mu_C)$ in each design, where $\mu_B, \mu_C =$ average effect of B, C vs A

Models for network meta-analysis: consistency model (2)

True log odds in each group in trial <i>i</i>						
Design	A	В	С			
ABC	$lpha_i$	$\alpha_i + \mu_{iB}$	$\alpha_i + \mu_{iC}$			
AB	$lpha_i$	$\alpha_i + \mu_{iB}$	-			
AC	$lpha_i$	-	$\alpha_i + \mu_{iC}$			
BC	$lpha_i$	$\alpha_i + \mu_{iB}$	$\alpha_i + \mu_{iC}$			

- What about trials with no arm A?
- Easiest to regard arm A in BC trials as "missing data"
- Design BC still contributes to estimating $\mu_C \mu_B$

Full consistency model

- Notation:
 - interventions A (reference), B, C, D, ...
 - effect of intervention J vs. A:
 - » estimate (from data) y_{iJ} → $y_i = (y_{iB}, y_{iC}, y_{iD}, ...)$
 - » study-specific mean μ_{iJ} → $\mu_i = (\mu_{iB}, \mu_{iC}, \mu_{iD}, ...)$
 - » overall mean μ_J → $\mu = (\mu_B, \mu_C, \mu_D, ...)$
 - estimated variance-covariance matrix of y_i is S_i
- Within-trial model: $y_i \sim N(\mu_i, S_i)$
- Between-trials model: $\mu_i \sim N(\mu, \Sigma)$

we'll come back to Σ later

- Doesn't matter that some y_{ij} are missing
- This is a *contrast-based* model, cf. an *arm-based* model for summary outcomes y_i^{*} = (y_{iA}^{*}, y_{iB}^{*}, y_{iC}^{*}, y_{iD}^{*}, ...)

Inconsistency model

B

True log	True log odds in each group in trial i					
Design	A	В	С			
ABC	$lpha_i$	$\alpha_i + \mu_{iB}$	$\alpha_i + \mu_{iC}$			
AB	$lpha_i$	$\alpha_i + \mu_{iB} + \omega_I$	-			
AC	$lpha_i$	-	$\alpha_i + \mu_{iC} + \omega_2$			
BC	$lpha_i$	$\alpha_i + \mu_{iB}$	$\alpha_i + \mu_{iC} + \omega_3$			

- Inconsistency: treatment effects differ across designs
 - "design-by-treatment interaction"
 - regard the $\omega^\prime s$ as fixed effects

Higgins JPT, Jackson D, Barrett JL, Lu G, Ades AE, White IR. Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. *Research Synthesis Methods* 2012; **3**: 98–110.

А

Heterogeneity

- Many networks are sparse
- e.g. a network meta-analysis of 8 thrombolytic treatments for AMI:

Streptokinase

Alteplase

Accelerated alteplase

Α

В

С

Heterogeneity models

- Why does sparseness matter?
- Because between-trials variance $\Sigma = var(\mu_i)$ includes unidentified terms
 - e.g. $var(\mu_{iD} \mu_{iE})$ and hence $cov(\mu_{iD}, \mu_{iE})$ isn't identified without a D-E trial
 - nor is $cov(\mu_{iB}, \mu_{iE})$ with only 1 B-E trial
- Need modelling assumptions for Σ
- Commonest is "common heterogeneity assumption": $var(\mu_{iJ} - \mu_{iI}) = \tau^2$ for all treatment pairs (*I*,*J*)

Network meta-analysis: standard model

- Let y^{IJ}_{di} be the estimated log odds ratio (or other measure) for treatment J vs. I in study i with design d
- Let s_{di}^{IJ} be its standard error
- Consistency model: $y_{di}^{IJ} \sim N(\mu_{di}^{IJ}, (s_{di}^{IJ})^2) \leftarrow approximation$ where $\mu_{di}^{IJ} \sim N(\delta^J - \delta^I, \tau^2)$
- δ^J is the mean effect of J vs. reference treatment A
 - we make sure that results don't depend on the choice of reference treatment
- τ² is the common heterogeneity (between-studies) variance
- Inconsistency model: $\mu_{di}^{IJ} \sim N(\delta^J \delta^I + \omega_d^{IJ}, \tau^2)$
 - true treatment effects are different in every design

Network meta-analyses: estimation

- In the past, the models have been fitted using WinBUGS
 - because frequentist alternatives have not been available
 - has made network meta-analysis difficult for nonstatisticians
- Now, consistency and inconsistency models can be fitted using multivariate meta-analysis and multivariate meta-regression
- Trials without the reference intervention are handled
 - by a trial-specific baseline intervention (complicates code); or
 - by "augmenting" these trials with a very small reference arm (e.g. 0.0001 successes out of 0.001)

Network meta-analysis: multi-arm trials

- Multi-arm trials contribute >1 log odds ratio
 - need to allow for their covariance
 - mathematically straightforward but complicates programming
- With only 2-arm trials, we can fit models using standard "meta-regression"
- Multi-arm trials complicate this need suitable data formats and multivariate analysis

Example analyses

Smoking network

Smoking network: results

Intervention	Odds ratio (95% CI)	P(best)
A (no contact)	1 (reference)	0.0%
B (self help)	1.49 (0.78-2.85)	3.1%
C (individual counselling)	2.02 (1.37-2.98)	31.9%
D (group counselling)	2.38 (1.14-4.97)	65.0%

- Between-trials SD on log OR scale: $\hat{\tau} = 0.674$ (large)
- D or C is likely to be best
- Test of inconsistency (Wald test in design-by-treatment interaction model): χ^2 =5.11 on 7 df, p=0.65

Smoking network

Test of consistency: chi2(7)=5.11, P=0.646

Thrombolytics network

Thrombolytics network: results

Intervention		Odds ratio (95% CI)	P(best)
А	(streptokinase)	1 (reference)	0.0%
В	(accelerated alteplase)	0.85 (0.78-0.93)	19.3%
С	(alteplase)	1.00 (0.94-1.07)	0.1%
D	(=A+C)	0.96 (0.87-1.05)	0.5%
Е	(tenecteplase)	0.86 (0.73-1.00)	22.4%
F	(reteplase)	0.89 (0.79-1.01)	6.8%
G	(urokinase)	0.82 (0.53-1.27)	50.9%
Н	(anti-streptilase)	1.01 (0.94-1.10)	0.0%

- Between-trials SD on log OR scale: $\hat{\tau}=0.015$ (small)
- B, E or G is probably best
- Test of inconsistency: χ²=8.61 on 8 df, p=0.38

Thrombolytics network

Test of consistency: chi2(8)=8.61, P=0.377

Some controversies

Controversies: what data to extract?

- Both my examples have summarised each study as a 2x2 table: successes/total in each arm
 - the standard in Cochrane systematic reviews
 - has the advantage of avoiding authors' tendency to "cherry-pick" the best results
- An alternative is to use the estimated treatment effect(s) in each trial's report
 - may be adjusted for prognostic factors (increases power in RCTs)
 - essential in observational studies (where we have to trust the authors to adjust for confounders)

Controversies: are published data enough?

- Published data have limitations
- The ideal is to get the raw data from all studies (individual participant data, IPD)
- IPD is especially valuable when exploring phenomena which tend to be inconsistently analysed / reported:
 - interactions (subgroup effects)
 - adjustment for confounding in observational studies
- But it is much slower and much more expensive...

Controversies: the common heterogeneity model

- The common heterogeneity model assigns heterogeneity even when a contrast is estimated in a single study (e.g. B-E in thrombolytics) – must be good.
- But homogeneous parts of the network may become "contaminated" by more heterogeneous parts.
 - could in principle have:

Pairwise, B vs A: OR = 0.8 (95% CI, 0.7-0.9) $\hat{\tau}^2 = 0$ Pairwise, C vs A: OR = 1 (95% CI, 0.5-2.0) $\hat{\tau}^2 = 2$

Network, B vs A:
OR = 0.8 (95% CI, 0.5-1.3)
$$\hat{\tau}^2 = 1$$
 "unfair"?!

Network, C vs A: OR = 1 (95% CI, 0.6-1.7) $\hat{\tau}^2 = 1$

Ideally want a model with τ^2 41 exchangeable across comparisons

Controversies: defining inconsistency

В

Α

True log odds in each group in trial i					
Design	A	В	С		
ABC	$lpha_i$	$\alpha_i + \mu_{iB}$	$\alpha_i + \mu_{iC}$		
AB	$lpha_i$	$\alpha_i + \mu_{iB} + \omega_I$	-		
AC	$lpha_i$	-	$\alpha_i + \mu_{iC} + \omega_2$		
BC	$lpha_i$	$\alpha_i + \mu_{iB}$	$\alpha_i + \mu_{iC} + \omega_3$		

- Our "design-by-treatment interaction model" has 3 inconsistency parameters
- Intuitively, should be only one per "loop"
 - but we haven't found a sensible way to define it
 - model of Lu & Ades (2006) isn't symmetrical with

MRC | Medical Research Council

Controversies: testing for inconsistency

- Test for inconsistency is a global test on many degrees of freedom
 - likely to have low power in practice
- Can we use substantive knowledge to define more targetted tests?
- Should we accept that inconsistency is present even when test is non-significant?

Controversies: allowing for inconsistency

What do we do if we decide we have inconsistency?

Obviously we first try to explain it – "did the A-B trials recruit more severely ill patients?", etc.

If we fail, then do we

- refuse to draw conclusions about treatment comparisons? (maybe we asked the wrong question?)
- infer treatment comparisons from the consistency model, with appropriate caveats?
- treat inconsistency as another random effect?
 - we've proposed a model for this (Jackson et al, under review)
 - it inflates std errors to "account for" inconsistency
 - just as the standard random-effects model inflates std errors to "account for" heterogeneity.

Controversies: estimation

- Network meta-analysis was in the past done using Bayesian methods (1-stage analysis, arm-based model, full binomial likelihood)
 - WinBUGS
 - rank treatments, give p(treatment C is best) etc.
- I've proposed frequentist methods based on multivariate meta-analysis (2-stage analysis, contrastbased model, Normal approximation to the likelihood)
 - faster and more accessible
 - don't allow well for sparse binary data (e.g. smoking trial 9: 0/33 vs 9/48)
- Next slide compares the methods in the smoking data...

Smoking network: method comparison

log OR: treatment vs. A	Two-stage frequentist			One-stage Bayesian		
	Est.	std err	P(best)	Est.	std err	P(best)
A (ref)	-	-	0.0%	-	-	0.0%
В	0.398	0.331	3.1%	0.494	0.399	5.7%
С	0.702	0.199	31.9%	0.844	0.236	23.5%
D	0.866	0.376	65.0%	1.101	0.437	70.8%
τ: between trials SD	0.674	0.140		0.731		

- One-stage Bayesian analysis taken from Lu & Ades, JASA 2006; 101: 447–459.
- Differences between methods are mainly attributable to the approximation in the two-stage method

Why is the two-stage method inaccurate?

- Because the standard error is correlated with the point estimate
 - more extreme estimates are downweighted, causing bias towards null
- Problem appears to be restricted to binary data

A frequentist one-stage method for binary data?

- Should be able to fit a generalised linear mixed model (Stata melogit)
 - random effect for study*treatment interaction
 - (± fixed or random effect for design*treatment interaction)
- How do we handle main effect of study?
 - fixed effect? → one parameter per study → may underestimate heterogeneity variance & std error
 - random effect? but then results are contaminated by between-study information
 - eliminate it by conditioning on study margins? may be ideal but computationally difficult
 Stijnen T, Hamza TH, Özdemir P. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. *Statistics in Medicine* 2010; **29**: 3046–3067.

Controversies: ranks

- Rankogram displays the posterior probability that each treatment is
 - ranked 1 (the best), ≤ 2 , ≤ 3 etc.
- The argument is
 - a clinician wants to use the best treatment, so we maximise their chances
 - if best treatment isn't available, want to maximise their chance of getting the 2nd best

Salanti G, Ades A, Ioannidis J. Graphical methods and numerical summaries for presenting results from multipletreatment meta-analysis: an overview and tutorial. *Journal of Clinical Epidemiology* 2011; **64**: 163–171.

Controversies: ranks

- But is this the right way to choose a treatment?
- Decision theory suggests
 choosing the treatment
 which maximises the
 expected utility, e.g. p(quit smoking | treatment)
 - would take account of uncertainty
 - best would depend on "baseline risk" p(quit smoking | no treatment)

Resources

- Bayesian approach using WinBUGS: the NICE decision support unit has a series of useful documents at http://www.nicedsu.org.uk/Evidence-Synthesis-TSDseries%282391675%29.htm
- Frequentist approach using Stata: I have written network, a suite of programs to read in data, fit consistency and inconsistency models, and graph results
 - the consistency and inconsistency models are expressed as multivariate meta-analyses / metaregressions and fitted using my mvmeta
 - net from

http://www.mrc-bsu.cam.ac.uk/IW_Stata/

 Frequentist approach using R: Antonio Gasparrini has written an R counterpart to mvmeta

Network meta-analysis: summary

Interpretation best treatment / decision theory								
Estimation bayesian: exact likelihood, 1-stage, arm-based frequentist: 2-stage + normal approx? contrast-based?								
Model for								
study effect	treatment effects	hetero- geneity	incons- istency	covariates quality				
Extracting data 2x2 table / treatment effect / IPD								
Identifying relevant papers								
Clinical question								

Thanks to Julian Higgins (U of Bristol), Dan Jackson (BSU) and Jessica Barrett (U of Cambridge) who worked with me on this. 52