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Maurice Belz 
(1897–1975) Have you heard it all before? 

No, thanks to: 
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Plan 

• Systematic review  

• Meta-analysis  

• Indirect comparisons 

• Network meta-analysis 

– models allowing for heterogeneity 

– models allowing for inconsistency 

– model estimation 

– examples 

– controversies 

 



Systematic review 

• Define a clinical question 

– typically: how good is this intervention? (often 
drugs, but also e.g. psychological therapy) 

• Obtain all papers relevant to the question using a 
systematic search strategy 

– typically restricted to randomised controlled 
trials (RCTs) 

• Record study characteristics including quality 

• Extract quantitative study results 

• If appropriate, perform a statistical summary 
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See e.g.  
• Egger M, Davey Smith G, Altman DG, editors. Systematic Reviews in 

Healthcare: Meta-analysis in Context (2001) 
• The Cochrane Collaboration, http://www.cochrane.org/ 

statistician’s roles this talk 



Pairwise meta-analysis: data from 15 
randomised trials 

5 

study dA nA dC nC 

1 9 140 23 140 

6 75 731 363 714 

7 2 106 9 205 

8 58 549 237 1561 

9 0 33 9 48 

10 3 100 31 98 

11 1 31 26 95 

12 6 39 17 77 

13 95 1107 134 1031 

14 15 187 35 504 

15 78 584 73 675 

16 69 1177 54 888 

17 64 642 107 761 

18 5 62 8 90 

19 20 234 34 237 

Aim is to compare 
effectiveness of 
individual counselling 
(“C”) with no contact 
(“A”) in helping 
smokers to quit. 

 

Data in arm A, C:  

• dA, dC = # who 
quit smoking 

• nA, nC = # 
randomised  

Source: Lu & Ades, JASA 
2006; 101: 447–459. 

 

 



Data display: Forest plot 
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ID 

9 

10 

14 

8 

16 

15 

1 

7 

11 

13 

17 

12 

18 

19 

6 

Study 

1.92 (1.71, 2.16) 

Odds ratio (95% CI) 

16.11 (0.90, 287.30) 

14.96 (4.39, 50.94) 

0.86 (0.46, 1.61) 

1.52 (1.12, 2.06) 

1.04 (0.72, 1.50) 

0.79 (0.56, 1.11) 

2.86 (1.27, 6.43) 

2.39 (0.51, 11.26) 

11.30 (1.47, 87.18) 

1.59 (1.21, 2.10) 

1.48 (1.06, 2.05) 

1.56 (0.56, 4.33) 

1.11 (0.35, 3.57) 

1.79 (1.00, 3.22) 

9.05 (6.83, 11.97) 

Odds ratio (95% CI) 

16.11 (0.90, 287.30) 

14.96 (4.39, 50.94) 

0.86 (0.46, 1.61) 

1.52 (1.12, 2.06) 

1.04 (0.72, 1.50) 

0.79 (0.56, 1.11) 

2.86 (1.27, 6.43) 

2.39 (0.51, 11.26) 

11.30 (1.47, 87.18) 

1.59 (1.21, 2.10) 

1.48 (1.06, 2.05) 

1.56 (0.56, 4.33) 

1.11 (0.35, 3.57) 

1.79 (1.00, 3.22) 

9.05 (6.83, 11.97) 

favours A   favours C  
1 .2 .5 1 2 5 10 20 

Forest plot 
shows odds 
ratio (95% 
confidence 
interval) for C 
vs. A for each 
of the 15 
studies. 
 
Shaded blocks 
represent 
amount of 
information 
(area  1/se2) 



Pairwise meta-analysis:  
“fixed-effect” model 

•
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Forest plot again 
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Note the high 
degree of 
heterogeneity 
between studies. 
 
Ideally we’d 
explain it – e.g. if 
study 6 was in 
people who had 
just had a major 
diagnosis. 
 
But often we 
need to model it 
instead. 
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0.86 (0.46, 1.61) 
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0.79 (0.56, 1.11) 
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1.79 (1.00, 3.22) 
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1.04 (0.72, 1.50) 
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1.11 (0.35, 3.57) 
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1 .2 .5 1 2 5 10 20 



Pairwise meta-analysis: random-effects 
model 

•
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Overall  (I-squared = 92.4%, p = 0.000)
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1.2 .5 1 2 5 10 20

Forest plot showing meta-analysis result 
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The random-
effects analysis 
gives an estimate 
of the overall 
mean allowing for 
heterogeneity 

and a prediction 
interval (effect in 

a new study) 



A note on terminology 

•
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Model Standard name Better name? 

Fixed-effect Common effect 

Random-effects Random effects 

(not used) Fixed effects 



Other issues in (pairwise) meta-analysis 

• Study quality 

• Study-level covariates  “meta-regression” 

• Publication bias 

– small trials more likely to be published if they show 
statistically significant effects? 

– see next 
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Exploring publication bias: “funnel plot” 
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Actually the data are more complicated … 

14 

study dA nA dB nB dC nC dD nD 

1 9 140 23 140 10 138 

2 11 78 12 85 29 170 

3 79 702 77 694 

4 18 671 21 535 

5 8 116 19 146 

6 75 731 363 714 

7 2 106 9 205 

8 58 549 237 1561 

9 0 33 9 48 

10 3 100 31 98 

11 1 31 26 95 

12 6 39 17 77 

13 95 1107 134 1031 

14 15 187 35 504 

15 78 584 73 675 

16 69 1177 54 888 

17 64 642 107 761 

18 5 62 8 90 

19 20 234 34 237 

20 0 20 9 20 

21 20 49 16 43 

22 7 66 32 127 

23 12 76 20 74 

24 9 55 3 26 

24 trials 
compared 4 
different 
interventions 
to help 
smokers quit: 

A="No 
contact"  

B="Self help"  

C="Individual 
counselling"  

D="Group 
counselling" 



Actually the data are more complicated … 
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We have trials 
of different 
designs: 

• A vs C vs D 

• B vs C vs D 

• A vs B (x3) 

• A vs C (x14) 

• A vs D 

• B vs C 

• B vs D 

• C vs D (x2) 

study dA nA dB nB dC nC dD nD 

1 9 140 23 140 10 138 

2 11 78 12 85 29 170 

3 79 702 77 694 

4 18 671 21 535 

5 8 116 19 146 

6 75 731 363 714 

7 2 106 9 205 

8 58 549 237 1561 

9 0 33 9 48 

10 3 100 31 98 

11 1 31 26 95 

12 6 39 17 77 

13 95 1107 134 1031 

14 15 187 35 504 

15 78 584 73 675 

16 69 1177 54 888 

17 64 642 107 761 

18 5 62 8 90 

19 20 234 34 237 

20 0 20 9 20 

21 20 49 16 43 

22 7 66 32 127 

23 12 76 20 74 

24 9 55 3 26 
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Evidence network: the smoking data 

A 

C B 

D 

3 

1 

1 14 

1 

1 

1 

2 

14 trials compared A with C 

“design AC” 

1 trial compared A, C and D 

“design ACD” 

etc. 



Indirect comparisons 

•

17 

A 

C B 

D 
3 

1 

1 14 

1 

1 

1 

2 



Bias in indirect comparisons (1) 

• Suppose B and C are equally beneficial compared to A 

– B was trialled in the 1990s in a wide range of 
smokers 

– C was trialled in the 2000s in smokers who had 
failed in previous quit attempts 

• So C is likely to show smaller benefit than B 

• Quit rates might be: 

 

 

 

 

• But what if all 3 interventions had been tried? 

• Can regard C in 1990s and B in 2000s as “missing 
groups” – and data are missing not at random 18 

Trial A B C 

1990s 10% 20% 

2000s 10% 15% 

20% 

15% 



Smoking quit rates 

Trial 
 

A 
 

B 
 

C 
 

A vs. B 20% 30% 

A vs. C 10% 18% 

Comparison with A 

Risk 
difference 

Risk 
ratio 

Odds 
ratio 

+10% 1.50 1.71 

+8% 1.80 1.98 

Bias in indirect comparisons (2) 

• If the overall event rates differ, then there are also 
problems with the scale on which intervention effects 
are measured. Suppose: 

19 

B best C best C best 

• Extrapolation problem – no easy answer 



Network meta-analysis 

• Despite these problems, I’ll proceed to combine all the 
evidence – indirect and direct – in order to get our best 
estimates of the value of all the interventions 

• This is called network meta-analysis 

– multiple treatments meta-analysis 

– mixed treatment comparisons 

• Network meta-analysis addresses the real clinical 
question: which intervention is best for the patient? 

– may additionally require modelling covariates 

• Much used by NICE (National Institute for Clinical 
Excellence) in comparing interventions 
 

• See e.g. Salanti G, Higgins JP, Ades A, Ioannidis JP. Evaluation of 
networks of randomized trials. Statistical Methods in Medical Research 
2008; 17: 279–301. 

20 
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Aims of network meta-analysis 

1. Use all the data & thus get 

– better estimates of treatment effects 

– opportunity to identify the best treatment 

2. Assess whether the evidence is consistent 

– i.e. does the indirect evidence agree with the direct 
evidence? 

The main statistical challenges are 

– formulating and fitting models that allow for 
heterogeneity and inconsistency 

– assessing inconsistency and (if found) finding ways 
to handle it 

Less-statistical challenges include defining the scope of the 
problem: which treatments to include, what patient 
groups, what outcomes 
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Models for network meta-analysis: 
consistency model (1) 

True log odds in each group in trial i 

Design A B C 

ABC ai ai + miB ai + miC 

AB ai ai + miB - 

AC ai - ai + miC 

A 

C B 

• Trials have different baseline risks: no assumptions 
on ai (“fixed effects” for trial)  

• Between-trials model: mi = (miB , miC) ~ N(m, S) 

– heterogeneity (variation between trials): S ≠ 0 
(“random effects” for treatment*trial) 

• Consistency: mi has same mean m =(mB , mC) in each 

design, where mB, mC = average effect of B, C vs A 
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• What about trials with no arm A? 

• Easiest to regard arm A in BC trials as “missing data”   

• Design BC still contributes to estimating mC – mB 

 

 

Models for network meta-analysis: 
consistency model (2) 

True log odds in each group in trial i 

Design A B C 

ABC ai ai + miB ai + miC 

AB ai ai + miB - 

AC ai - ai + miC 

BC ai ai + miB ai + miC 

A 

C B 



Full consistency model 

•

24 

we’ll come 
back to S later 
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Inconsistency model 

True log odds in each group in trial i 

Design A B C 

ABC ai ai + miB ai + miC 

AB ai ai + miB  + w1 - 

AC ai - ai + miC  + w2 

BC ai ai + miB ai + miC   + w3 

A 

C B 

• Inconsistency: treatment effects differ across designs 

– “design-by-treatment interaction” 

– regard the w’s as fixed effects 

Higgins JPT, Jackson D, Barrett JL, Lu G, Ades AE, White IR. Consistency and 
inconsistency in network meta-analysis: concepts and models for multi-arm 
studies. Research Synthesis Methods 2012; 3: 98–110. 



Heterogeneity 

• Many networks are sparse 

• e.g. a network meta-analysis of 
8 thrombolytic treatments for AMI: 
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D 

F 

E 

A 

G 

C 

H B 

A Streptokinase 

B Accelerated alteplase 

C Alteplase 

D = A + C 

E Tenecteplase 

F Reteplase 

G Urokinase 

H Anti-streptilase 

2-arm trials 
3-arm trials 



Heterogeneity models 

•
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D 

F 

E 

A 

G 

H B 

C 



Network meta-analysis: standard model 

•

28 



Network meta-analyses: estimation 

• In the past, the models have been fitted using WinBUGS 

– because frequentist alternatives have not been 
available 

– has made network meta-analysis difficult for non-
statisticians 

• Now, consistency and inconsistency models can be 
fitted using multivariate meta-analysis and multivariate 
meta-regression 

• Trials without the reference intervention are handled  

– by a trial-specific baseline intervention (complicates 
code); or 

– by “augmenting” these trials with a very small 
reference arm (e.g. 0.0001 successes out of 0.001) 

29 



Network meta-analysis: multi-arm trials 

• Multi-arm trials contribute >1 log odds ratio  

– need to allow for their covariance 

– mathematically straightforward but complicates 
programming 

• With only 2-arm trials, we can fit models using standard 
“meta-regression” 

• Multi-arm trials complicate this – need suitable data 
formats and multivariate analysis 
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Example analyses 
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B vs. A

C vs. A

D vs. A

C vs. B

D vs. B

D vs. C

 

 

 

 

Study 3

Study 4

Study 5

 

 

 

 

Study 6

Study 7

Study 8

Study 9

Study 10

Study 11

Study 12

Study 13

Study 14

Study 15

Study 16

Study 17

Study 18

Study 19

Study 1

 

 

 

 

Study 1

Study 20

 

 

 

 

Study 21

Study 2

 

 

 

 

Study 2

Study 22

 

 

 

 

Study 1

 

Study 2

 

Study 23

Study 24

 

 

 

 

 

 

 

 

 

 

-2 0 2 4 6 -2 0 2 4 6

Log odds ratio
 

Smoking network



Smoking network: results  

•
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Intervention 
Odds ratio  

(95% CI) 
P(best) 

A (no contact) 1 (reference) 0.0% 

B (self help) 1.49 (0.78-2.85) 3.1% 

C (individual counselling) 2.02 (1.37-2.98) 31.9% 

D (group counselling) 2.38 (1.14-4.97) 65.0% 
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B vs. A

C vs. A

D vs. A

C vs. B

D vs. B

D vs. C

 
 
 
 

Study 3
Study 4
Study 5
All A B

All studies
 
 
 
 

Study 6
Study 7
Study 8
Study 9

Study 10
Study 11
Study 12
Study 13
Study 14
Study 15
Study 16
Study 17
Study 18
Study 19

All A C
 

Study 1
All A C D

 
All studies

 
 
 
 

Study 1
All A C D

 
Study 20

All A D
 

All studies

 
 
 
 

Study 21
All B C

 
Study 2

All B C D
 

All studies
 
 
 
 

Study 2
All B C D

 
Study 22

All B D
 

All studies
 
 
 
 

Study 1
All A C D

 
Study 2

All B C D
 

Study 23
Study 24

All C D
 

All studies
 
 
 
 
 
 
 

-2 0 2 4 6 -2 0 2 4 6

Studies Pooled overall Pooled within design

Log odds ratio

Test of consistency: chi2(7)=5.11, P=0.646

Smoking network
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B vs. A

C vs. A

D vs. A

F vs. A

G vs. A

H vs. A

D vs. B

E vs. B

F vs. B

G vs. B

H vs. B

G vs. C

H vs. C
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Study 7

Study 8

Study 9

Study 2
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Study 10
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Study 13
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Study 15

Study 16
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Study 17

 

 

 

 

Study 18

Study 19

 

 

 

 

Study 20

Study 21

 

 

 

 

Study 22

Study 23

 

 

 

 

Study 24

Study 25

Study 26

 

 

 

 

Study 2

Study 27

Study 28

 

 

 

 

-2 0 2 4 -2 0 2 4 -2 0 2 4

Log odds ratio
 

Thrombolytics network



Thrombolytics network: results 

•
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Intervention 
Odds ratio 
(95% CI) 

P(best) 

A (streptokinase) 1 (reference) 0.0% 

B (accelerated alteplase) 0.85 (0.78-0.93) 19.3% 

C (alteplase) 1.00 (0.94-1.07) 0.1% 

D (=A+C) 0.96 (0.87-1.05) 0.5% 

E (tenecteplase) 0.86 (0.73-1.00) 22.4% 

F (reteplase) 0.89 (0.79-1.01) 6.8% 

G (urokinase) 0.82 (0.53-1.27) 50.9% 

H (anti-streptilase) 1.01 (0.94-1.10) 0.0% 
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B vs. A

C vs. A

D vs. A

F vs. A

G vs. A

H vs. A

D vs. B

E vs. B

F vs. B

G vs. B

H vs. B

G vs. C

H vs. C
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All A B D

All studies
 
 
 
 

Study 3
Study 4
Study 5
Study 6
Study 7
Study 8
Study 9
All A C

 
Study 2

All A C H
 

All studies
 
 
 
 

Study 1
All A B D

 
Study 10

All A D
 

All studies
 
 
 
 

Study 11
All A F

All studies
 

 
 
 
 

Study 12
All A G
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Study 2
All A C H

 
Study 13
Study 14
Study 15
Study 16

All A H
 

All studies
 
 
 
 

Study 1
All A B D

All studies
 
 
 
 

Study 17
All B E

All studies
 
 
 
 

Study 18
Study 19

All B F
All studies

 
 
 
 

Study 20
Study 21

All B G
All studies

 
 
 
 

Study 22
Study 23

All B H
All studies

 
 
 
 

Study 24
Study 25
Study 26

All C G
All studies

 
 
 
 

Study 2
All A C H

 
Study 27
Study 28

All C H
 

All studies
 
 
 
 
 
 

-2 0 2 4 -2 0 2 4 -2 0 2 4

Studies Pooled overall Pooled within design

Log odds ratio

Test of consistency: chi2(8)=8.61, P=0.377

Thrombolytics network



Some controversies 
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Controversies: what data to extract? 

• Both my examples have summarised each study as a 
2x2 table: successes/total in each arm 

– the standard in Cochrane systematic reviews 

– has the advantage of avoiding authors’ tendency to 
“cherry-pick” the best results 

• An alternative is to use the estimated treatment 
effect(s) in each trial’s report 

– may be adjusted for prognostic factors (increases 
power in RCTs) 

– essential in observational studies (where we have to 
trust the authors to adjust for confounders) 
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Controversies: are published data 
enough? 

• Published data have limitations 

• The ideal is to get the raw data from all studies 
(individual participant data, IPD) 

• IPD is especially valuable when exploring phenomena 
which tend to be inconsistently analysed / reported: 

– interactions (subgroup effects) 

– adjustment for confounding in observational studies 

• But it is much slower and much more expensive… 
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Controversies: the common heterogeneity 
model  

• The common heterogeneity model assigns 
heterogeneity even when a contrast is estimated in a 
single study (e.g. B-E in thrombolytics) – must be good. 

• But homogeneous parts of the network may become 
“contaminated” by more heterogeneous parts.  

– could in principle have: 

41 

C A B 

“unfair”?! 
Ideally want a model with t 2 

exchangeable across comparisons 



Controversies: defining inconsistency 

• Our “design-by-treatment interaction model” has 3 
inconsistency parameters 

• Intuitively, should be only one per “loop” 

– but we haven’t found a sensible way to define it 

– model of Lu & Ades (2006) isn’t symmetrical with 
multi-arm trials 42 

True log odds in each group in trial i 

Design A B C 

ABC ai ai + miB ai + miC 

AB ai ai + miB  + w1 - 

AC ai - ai + miC  + w2 

BC ai ai + miB ai + miC   + w3 

A 

C B 



Controversies: testing for inconsistency 

• Test for inconsistency is a global test on many degrees 
of freedom 

– likely to have low power in practice 

• Can we use substantive knowledge to define more 
targetted tests? 

• Should we accept that inconsistency is present even 
when test is non-significant? 
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Controversies: allowing for inconsistency 

What do we do if we decide we have inconsistency? 

Obviously we first try to explain it – “did the A-B trials 
recruit more severely ill patients?”, etc. 

If we fail, then do we 

• refuse to draw conclusions about treatment 
comparisons? (maybe we asked the wrong question?) 

• infer treatment comparisons from the consistency 
model, with appropriate caveats? 

• treat inconsistency as another random effect?  

– we’ve proposed a model for this (Jackson et al, 
under review) 

– it inflates std errors to “account for” inconsistency 

– just as the standard random-effects model inflates 
std errors to “account for” heterogeneity. 
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Controversies: estimation 

• Network meta-analysis was in the past done using 
Bayesian methods (1-stage analysis, arm-based model, 
full binomial likelihood) 

– WinBUGS 

– rank treatments, give p(treatment C is best) etc. 

• I’ve proposed frequentist methods based on 
multivariate meta-analysis (2-stage analysis, contrast-
based model, Normal approximation to the likelihood) 

– faster and more accessible 

– don’t allow well for sparse binary data (e.g. smoking 
trial 9: 0/33 vs 9/48) 

• Next slide compares the methods in the smoking data… 

45 
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Smoking network: method comparison 

log OR: 
treatment 
vs. A 

Two-stage 
frequentist 

One-stage  
Bayesian 

Est. std err P(best) Est. std err P(best) 

A (ref) - - 0.0% - - 0.0% 

B 0.398 0.331 3.1% 0.494 0.399 5.7% 

C 0.702 0.199 31.9% 0.844 0.236 23.5% 

D 0.866 0.376 65.0% 1.101 0.437 70.8% 

t: between 
trials SD 

0.674 0.140 0.731 . 

• One-stage Bayesian analysis taken from Lu & Ades, 
JASA 2006; 101: 447–459. 

• Differences between methods are mainly attributable to 
the approximation in the two-stage method 

 



Why is the two-stage method inaccurate? 

• Because the standard 
error is correlated with 
the point estimate 

– more extreme 
estimates are down-
weighted, causing bias 
towards null 

• Problem appears to be 
restricted to binary data 
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A frequentist one-stage method for binary 
data? 

• Should be able to fit a generalised linear mixed model 
(Stata melogit) 

– random effect for study*treatment interaction 

– (± fixed or random effect for design*treatment 
interaction) 

• How do we handle main effect of study? 

– fixed effect?  one parameter per study  may 
underestimate heterogeneity variance & std error 

– random effect? but then results are contaminated by 
between-study information 

– eliminate it by conditioning on study margins? may 
be ideal but computationally difficult 
Stijnen T, Hamza TH, Özdemir P. Random effects meta-analysis of event 
outcome in the framework of the generalized linear mixed model with 
applications in sparse data. Statistics in Medicine 2010; 29: 3046–3067. 
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Controversies: ranks 

• Rankogram displays the 
posterior probability that 
each treatment is  

– ranked 1 (the best), ≤2, 
≤3 etc. 

• The argument is  

– a clinician wants to use 
the best treatment, so we 
maximise their chances 

– if best treatment isn’t 
available, want to 
maximise their chance of 
getting the 2nd best 
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Salanti G, Ades A, Ioannidis J. Graphical methods and 
numerical summaries for presenting results from multiple-
treatment meta-analysis: an overview and tutorial. Journal 
of Clinical Epidemiology 2011; 64: 163–171. 



Controversies: ranks 

• But is this the right way to 
choose a treatment?  

• Decision theory suggests 
choosing the treatment 
which maximises the 
expected utility, e.g. p(quit 
smoking | treatment) 

– would take account of 
uncertainty 

– best would depend on 
“baseline risk” p(quit 
smoking | no treatment)  
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Resources 

• Bayesian approach using WinBUGS: the NICE decision 
support unit has a series of useful documents at 
http://www.nicedsu.org.uk/Evidence-Synthesis-TSD-
series%282391675%29.htm 

• Frequentist approach using Stata: I have 
written network, a suite of programs to 

read in data, fit consistency and 
inconsistency models, and graph results 

– the consistency and inconsistency models are 
expressed as multivariate meta-analyses / meta-
regressions and fitted using my mvmeta 

– net from 

http://www.mrc-bsu.cam.ac.uk/IW_Stata/ 

• Frequentist approach using R: Antonio Gasparrini has 
written an R counterpart to mvmeta 
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Test of consistency: chi2=8.61, df=8, P=0.377

Thrombolytics network



Network meta-analysis: summary 
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Clinical question 

Identifying relevant papers 

Extracting data 
2x2 table / treatment effect / IPD 

Model for 

study 
effect 

treatment 
effects 

hetero-
geneity 

incons-
istency 

covariates 
quality ... 

Estimation 
bayesian: exact likelihood, 1-stage, arm-based 

frequentist: 2-stage + normal approx? contrast-based? 

Interpretation 
best treatment / decision theory 

Thanks to Julian Higgins (U of Bristol), Dan Jackson (BSU) and 
Jessica Barrett (U of Cambridge) who worked with me on this. 


