Statistical Models for Censored Point Processes with Cure Rates

Jennifer Rogers

MSD Seminar 2 November 2011

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Outline

Background and MESS

Epilepsy MESS

Exploratory Analysis

Summary Statistics and Kaplan-Meier Curves Accelerated Failure Time Models

Joint Model

Joint Modelling of Event Counts and Survival Times Results

Extensions to the Simple Joint Model

Removal of the Post-Randomisation IID Assumption Allowing for Cure Rates

Full Joint Model

Model Checking and Further Extensions

Model Checking Further Extensions

Outline

Background and MESS Epilepsy MESS

Exploratory Analysis

Summary Statistics and Kaplan-Meier Curves

Accelerated Failure Time Models

Joint Model

Joint Modelling of Event Counts and Survival Times Results

Extensions to the Simple Joint Model

Removal of the Post-Randomisation IID Assumption Allowing for Cure Rates

Full Joint Model

Model Checking and Further Extensions

Model Checking Further Extension

Epilepsy

- Defined as the occurrence of recurrent, unprovoked seizures.
- ILAE classification scheme divides seizures into partial, generalised or unclassified seizures.
- Partial part of the brain; simple or complex; motor, sensory, occipital, frontal lobe and temporal lobe. Can sometimes occur with secondary generalisation
- Generalised all of the brain; tonic-clonic (grand mal), absence (petit mal), myoclonic and atonic

-MESS

Early Epilepsy and Single Seizures

- On average 50% of people do not experience a recurrence following a first seizure
- Around 20 30% of people will never achieve long-term remission
- Antiepileptic drugs (AEDs) come with unpleasant side effects

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

In early epilepsy are AEDs necessary?

-MESS

The MESS Trial

- MRC Multicentre Trial for Early Epilepsy and Single Seizures
- Comparison of policies: immediate vs deferred treatment
- Randomised 1443 patients
- Eligibility criteria:
- Outcomes of interest time to first seizure, time to second seizure

-MESS

The MESS Trial

- MRC Multicentre Trial for Early Epilepsy and Single Seizures
- Comparison of policies: immediate vs deferred treatment
- Randomised 1443 patients
- Eligibility criteria:
 - 1. Aged at least one month
- Outcomes of interest time to first seizure, time to second seizure

-MESS

The MESS Trial

- MRC Multicentre Trial for Early Epilepsy and Single Seizures
- Comparison of policies: immediate vs deferred treatment
- Randomised 1443 patients
- Eligibility criteria:
 - 2. Had experienced at least one epileptic seizure
- Outcomes of interest time to first seizure, time to second seizure

-MESS

The MESS Trial

- MRC Multicentre Trial for Early Epilepsy and Single Seizures
- Comparison of policies: immediate vs deferred treatment
- Randomised 1443 patients
- Eligibility criteria:
 - 3. Uncertainty about whether to proceed with treatment
- Outcomes of interest time to first seizure, time to second seizure

Outline

Background and MESS Epilepsy MESS

Exploratory Analysis

Summary Statistics and Kaplan-Meier Curves Accelerated Failure Time Models

Joint Model

Joint Modelling of Event Counts and Survival Times Results

Extensions to the Simple Joint Model

Removal of the Post-Randomisation IID Assumption Allowing for Cure Rates

Full Joint Model

Model Checking and Further Extensions

Model Checking Further Extension

Summary Statistics and Kaplan-Meier Curves

Seizure Type Pre-Randomisation

Seizure Type	Immediate	Deferred
Tonic-Clonic	375	406
Partial with 2° Tonic-Clonic	239	215
Partial	51	52
Generalised	21	19
Other	17	13

Summary Statistics and Kaplan-Meier Curves

Kaplan-Meier Curves by Treatment

Time from First to Second Seizure

Summary Statistics and Kaplan-Meier Curves

Cumulative Distribution Function

Empirical Cumulative Distribution Function

(time to first seizure)/(total time to second seizure)

-Summary Statistics and Kaplan-Meier Curves

Kaplan-Meier Curves by Seizure Type

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

-Accelerated Failure Time Models

Accelerated Failure Time Assumption

P-H assumption, for individual *i*

$$h_i(t) = e^{\beta' \mathbf{z}_i} h_0(t) \tag{1}$$

Epilepsy data well modelled by distributions that are AFT

$$S_i(t) = S_0(t/e^{\beta' \boldsymbol{z}_i}) \tag{2}$$

(1) $e^{\beta' z_i}$ reflects impact of treatment on baseline hazard (2) $e^{\beta' z_i}$ reflects impact of treatment on baseline time scale

-Accelerated Failure Time Models

Testing the AFT Assumption

z = 0/1 - allocated to deferred/immediate treatment

We define $t_0^{(a)}$, $t_1^{(a)}$, for 0 < a < 1, by:

$$a = S_0(t_0^{(a)})$$
 $a = S_1(t_1^{(a)})$

$$S_1(t_1^{(a)}) = S_0(t_0^{(a)})$$

Then by (2), $t_1^{(a)} = t_0^{(a)} e^{\beta}$

Percentile-percentile plot to test AFT assumption

Accelerated Failure Time Models

Percentile-percentile plots

Weibull, Exponential, Log-logistic, Lognormal, Gamma,....

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Background and MESS

Epilepsy MESS

Exploratory Analysis

Summary Statistics and Kaplan-Meier Curves Accelerated Failure Time Models

Joint Model

Joint Modelling of Event Counts and Survival Times Results

Extensions to the Simple Joint Model

Removal of the Post-Randomisation IID Assumption Allowing for Cure Rates

Full Joint Model

Model Checking and Further Extensions

Model Checking Further Extension Statistical Models for Censored Point Processes with Cure Rates

Joint Model

└─ Joint Modelling of Event Counts and Survival Times

The Data

Data arrives in two parts:

- 1. Pre-randomisation event count, X_i the number of seizures in a given period of time prior to entry to the trial
- 2. Post-randomisation survival times, (Y_{1i}, Y_{2i}) times to first and second seizure following randomisation to a treatment policy

└─ Joint Modelling of Event Counts and Survival Times

Standard Approaches

Treatment effects in recurrent events

- Cook and Lawless (2007)
- rates and mean functions, mixed Poisson model
- Use of baseline count data
 - Cook and Lawless (2007)
 - mixed Poisson processes
- If datasets exhibit cure rates, focus needs to be on gap times
- 'If I have a seizure, am I likely to have another one, and if so, when?'

-Joint Modelling of Event Counts and Survival Times

Joint Model

The joint model is specified by the following equations:

$$f_{X|\nu}(x_i \mid \nu_i; \lambda_i, u_i) = \frac{(\lambda_i u_i \nu_i)^{x_i} \exp(-\lambda_i u_i \nu_i)}{x_i!}$$

$$f_{Y_j|\nu}(y_{ji} \mid \nu_i; \lambda_i, \psi_i) = \lambda_i \psi_i \nu_i \exp(-\lambda_i \psi_i \nu_i y_{ji}), j = 1, 2$$

$$g_{\nu}(\nu_i; \alpha) = \frac{\alpha^{\alpha} \nu_i^{\alpha-1} \exp(-\alpha \nu_i)}{\Gamma(\alpha)}$$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

 $\lambda_i = \exp(\beta'_1 \mathbf{z}_{1i}), \psi_i = \exp(\beta'_2 \mathbf{z}_{2i}), \alpha$ determines degree of heterogeneity

(Cowling et al. 2006)

Joint Modelling of Event Counts and Survival Times

Graphical Representation

-Joint Modelling of Event Counts and Survival Times

Unconditional Distributions

- Unconditional distribution of X_i is Negative Binomial
- Unconditional joint survivor function of the Y_{ji}, j = 1, 2 is bivariate Lomax

$$\begin{aligned} f_{Y_1, Y_2}(y_{1i}, y_{2i}; \lambda_i, \psi_i, \alpha) &= \frac{\alpha + 1}{\alpha} (\lambda_i \psi_i)^2 \bigg\{ 1 + \frac{\lambda_i \psi_i(y_{1i} + y_{2i})}{\alpha} \bigg\}^{-(\alpha + 2)} \\ S_{Y_1, Y_2}(y_{1i}, y_{2i}; \lambda_i, \psi_i, \alpha) &= \bigg\{ 1 + \frac{\lambda_i \psi_i(y_{1i} + y_{2i})}{\alpha} \bigg\}^{\alpha} \end{aligned}$$

Unconditional marginals are univariate Lomax

-Joint Modelling of Event Counts and Survival Times

Log-Logistic and Lomax distributions

$$F_Y(y_i) = 1 - \{1 + (y_i/b)^a\}^{-1}$$
(3)

$$F_Y(y_i) = 1 - \{1 + (y_i/b)\}^{-a}$$
(4)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

When a = 1, (3) and (4) are equivalent

-Joint Modelling of Event Counts and Survival Times

Log-Logistic Distribution

Survivor function

$$S(y) = \frac{1}{1 + (y/b)^a}$$

Consider the following transformation:

$$\ln\left\{\frac{S(y)}{1-S(y)}\right\} = -a\ln(y) + a\ln(b)$$

Linear in $\ln(y)$

Joint Modelling of Event Counts and Survival Times

Justifying the Log-Logistic Distribution

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

-Joint Modelling of Event Counts and Survival Times

Log-Likelihood

Three different scenarios:

- 1. Y_{1i} and Y_{2i} both observed,
- 2. Y_{1i} is observed, but Y_{2i} is censored, and
- 3. Y_{1i} is censored

Straightforward to derive log-likelihood and derivatives allowing inference using a numerical method such as Newton-Raphson

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Results

Pre-Randomisation Seizure Rates

Seizure Type	$\widehat{\lambda}_{i}$ (95% C.I.)	Expected
		yearly rate
Tonic-Clonic	0.005 (0.005,0.006)	2
2° Tonic-Clonic	0.008 (0.007,0.009)	3
Partial	0.016 (0.013,0.019)	6

Results

Change in Seizure Rates, Post-Randomisation

Seizure Type	$\widehat{\psi}_i$ (95% C.I.)			
	Abnormal EEG			
	Immediate		D	eferred
Tonic-Clonic	0.122	(0.10,0.15)	0.188	(0.15,0.23)
2° Tonic-Clonic	0.127	(0.10,0.16)	0.282	(0.22,0.36)
Partial	0.078	(0.05,0.12)	0.074	(0.05,0.11)
	Normal EEG			
	Immediate		D	eferred
Tonic-Clonic	0.127	(0.10,0.15)	0.134	(0.11,0.16)
2° Tonic-Clonic	0.089	(0.07,0.11)	0.135	(0.11,0.17)
Partial	0.195	(0.12,0.32)	0.127	(0.08,0.21)

Outline

Background and MESS

Epilepsy MESS

Exploratory Analysis

Summary Statistics and Kaplan-Meier Curves

Accelerated Failure Time Models

Joint Model

Joint Modelling of Event Counts and Survival Times Results

Extensions to the Simple Joint Model

Removal of the Post-Randomisation IID Assumption Allowing for Cure Rates Full Joint Model

Model Checking and Further Extens

Model Checking Further Extensions

Recall...

- Risk of future seizures increases with the number of previous seizures
 - Clustering and different treatment effects
 - Time-varying seizure rate
- On average 50% of people do not experience a recurrence after a single seizure

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

- Large reductions in seizure rates
- Cure rate models

Removal of the Post-Randomisation IID Assumption

Removal of the Post-Randomisation IID Assumption

Evidence to suggest that ψ_i may change through time

$$f_{X|\nu}(x_i \mid \nu_i; \lambda_i, u_i) = \frac{(\lambda_i u_i \nu_i)^{x_i} \exp(-\lambda_i u_i \nu_i)}{x_i!}$$

$$f_{Y_1|\nu}(y_{1i} \mid \nu_i; \lambda_i, \psi_{1i}) = \lambda_i \psi_{1i} \nu_i \exp(-\lambda_i \psi_{1i} \nu_i y_{1i})$$

$$f_{Y_2|\nu}(y_{2i} \mid \nu_i; \lambda_i, \psi_{1i}, \psi_{2i}) = \lambda_i \psi_{1i} \psi_{2i} \nu_i \exp(-\lambda_i \psi_{1i} \psi_{2i} \nu_i y_{2i})$$

$$g_{\nu}(\nu_i; \alpha) = \frac{\alpha^{\alpha} \nu_i^{\alpha-1} \exp(-\alpha \nu_i)}{\Gamma(\alpha)}$$

 $\lambda_i = \exp(\beta'_1 \boldsymbol{z}_{1i}), \psi_{1i} = \exp(\beta'_2 \boldsymbol{z}_{2i}) \text{ and } \psi_{2i} = \exp(\beta'_3 \boldsymbol{z}_{3i})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Allowing for Cure Rates

Kaplan-Meier Curves

-Allowing for Cure Rates

Inclusion of a Cure Fraction

Large proportion of individuals 'immune' from future seizures

$$f_{X|\nu}(x_i \mid \nu_i; \lambda_i, u_i) = \frac{(\lambda_i u_i \nu_i)^{x_i} \exp(-\lambda_i u_i \nu_i)}{x_i!}$$

$$f_{Y_j|\nu}(y_{ji} \mid \nu_i; \lambda_i, \psi_i, p_{ji}) = p_{ji}\lambda_i\psi_i\nu_i \exp(-\lambda_i\psi_i\nu_i y_{ji})$$

$$S_{Y_j|\nu}(y_{ji} \mid \nu_i; \lambda_i, \psi_i, p_{ji}) = 1 - p_{ji} + p_{ji} \exp(-\lambda_i\psi_i\nu_i y_{ji})$$

$$g_{\nu}(\nu_i; \alpha) = \frac{\alpha^{\alpha}\nu_i^{\alpha-1} \exp(-\alpha\nu_i)}{\Gamma(\alpha)}$$

 $\lambda_i = \exp(\beta'_1 \boldsymbol{z}_{1i}), \psi_i = \exp(\beta'_2 \boldsymbol{z}_{2i}) \text{ and } p_{ji} = \frac{\exp(\kappa'_j \boldsymbol{w}_{ji})}{1 + \exp(\kappa'_j \boldsymbol{w}_{ji})}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Statistical Models for Censored Point Processes with Cure Rates

Extensions to the Simple Joint Model

— Full Joint Mode

Cure Rate

Seizure Type	$1 - \widehat{p}_{1i}$ (95% C.I.)			
	Abnormal EEG			
	Immediate		D	eferred
Tonic-Clonic	0.518	(0.45,0.59)	0.360	(0.20,0.43)
2° Tonic-Clonic	0.389	(0.31,0.48)	0.250	(0.19,0.33)
Partial	0.487	(0.36,0.62)	0.332	(0.22,0.46)
	Normal EEG			
	Immediate		D	eferred
Tonic-Clonic	0.528	(0.47,0.59)	0.511	(0.45,0.57)
2° Tonic-Clonic	0.584	(0.51,0.65)	0.568	(0.50,0.64)
Partial	0.345	(0.20,0.52)	0.330	(0.19,0.50)

 $1 - \hat{p}_{2i} = 0.26$ for all *i*

– Full Joint Model

Change in Seizure Rates, Following Randomisation

Seizure Type	$\widehat{\psi}_{1i}$ (95% C.I.) first seizure			
	Abnormal EEG			
	Immediate		D	eferred
Tonic-Clonic	0.347	(0.26,0.47)	0.738	(0.57,0.95)
2° Tonic-Clonic	0.326	(0.24,0.44)	0.786	(0.58,1.06)
Partial	0.522	(0.31,0.88)	0.695	(0.41,1.18)
	Normal EEG			
	Immediate		D	eferred
Tonic-Clonic	0.582	(0.45,0.75)	0.683	(0.53,0.87)
2° Tonic-Clonic	0.467	(0.34,0.65)	0.622	(0.46,0.84)
Partial	0.522	(0.27,1.00)	0.384	(0.20,0.73)

– Full Joint Model

Change in Seizure Rates, Following First Seizure

Seizure Type	$\widehat{\psi}_{2i}$ (95% C.I.) second seizure			
	Abnormal EEG			
	Immediate		Deferred	
Tonic-Clonic	3.806	(2.43,5.97)	1.554	(1.00,2.41)
2° Tonic-Clonic	1.835	(1.17,2.88)	0.870	(0.56,1.36)
Partial	2.754	(1.17,6.49)	2.047	(0.98,4.26)
	Normal EEG			
	Immediate		0	Deferred
Tonic-Clonic	1.688	(1.13,2.51)	1.373	(0.93,2.02)
2° Tonic-Clonic	2.727	(1.69,4.41)	2.577	(1.67,3.97)
Partial	3.138	(1.28,7.70)	4.649	(1.63,13.27)

Model Checking and Further Extensions

Outline

Background and MESS

Epilepsy MESS

Exploratory Analysis

Summary Statistics and Kaplan-Meier Curves

Accelerated Failure Time Models

Joint Model

Joint Modelling of Event Counts and Survival Times Results

Extensions to the Simple Joint Model

Removal of the Post-Randomisation IID Assumption Allowing for Cure Rates

Model Checking and Further Extensions

Model Checking Further Extensions

- Model Checking and Further Extensions
 - Model Checking

Model Comparisons

- Joint Model compared with Log-logistic cure rate model
- Kaplan-Meier estimates and fitted estimates
- Both models seem to fit data well
- Cowling et al. (2006) carried out a power analysis
- Estimates of treatment effects more precise than survival models

Model Checking and Further Extensions

Model Checking

Comparison with Kaplan-Meier Curves I

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Model Checking and Further Extensions

Comparison with Kaplan-Meier Curves II

Time from First to Second Seizure

- Model Checking and Further Extensions
 - -Further Extensions

Zero-truncated, one-inflated Poisson Distribution

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

- Different AEDs
- Further post-randomisation survival times
- Analysis of long-term prognosis

Statistical Models for Censored Point Processes with Cure Rates

Model Checking and Further Extensions

Further Extensions

Zero-Truncated, One-Inflated Poisson I

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

Model Checking and Further Extensions

-Further Extensions

Zero-Truncated, One-Inflated Poisson II

Zero-truncated Poisson($\lambda_i u_i \nu_i$) distribution

$$\mathsf{ZTP}(x_i;\lambda_i,u_i,\nu_i) = \frac{(\lambda_i u_i \nu_i)^{x_i} \exp(-\lambda_i u_i \nu_i)}{x_i!(1-\exp(-\lambda_i u_i \nu_i))} = \frac{(\lambda_i u_i \nu_i)^{x_i}}{x_i!(\exp(\lambda_i u_i \nu_i)-1)}.$$

One-inflated, zero-truncated Poisson distribution assumes that

$$f_X(x_i; \lambda_i, u_i, \nu_i, \pi) = \pi \mathbb{I}_{[x_i=1]} + (1 - \pi) \mathsf{ZTP}(x_i; \lambda_i u_i \nu_i)$$

 $\mathbb{I}_{[x_i=1]}$ is the indicator function taking the value 1 when $x_i = 1$ and zero otherwise

Statistical Models for Censored Point Processes with Cure Rates

- Model Checking and Further Extensions
 - Further Extensions

Two randomisation forms used during the trial

 Second randomisation strategy allows comparisons between specific drugs

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Statistical Models for Censored Point Processes with Cure Rates

- Model Checking and Further Extensions
 - Further Extensions

- Two randomisation forms used during the trial
 - 1. Randomisation \rightarrow Drug (614 participants)
- Second randomisation strategy allows comparisons between specific drugs

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

- Model Checking and Further Extensions
 - Further Extensions

Different AEDs I

Two randomisation forms used during the trial

- 1. Randomisation \rightarrow Drug (614 participants)
- 2. Drug \rightarrow Randomisation (811 participants)
- Second randomisation strategy allows comparisons between specific drugs

- Model Checking and Further Extensions
 - Further Extensions

Different AEDs II

- Antiepileptic drug strongly dependent on a number of baseline covariates, such as:
 - ► age
 - type of epilepsy
 - nature of the seizures
- Regress missing items on those influential baseline covariates we have observed

Multiple imputation

-Summary

- New modelling strategy for event counts and two survival times
- Mathematically and computationally straightforward to implement
- Extensions to 'simple joint model considered'
- Comparisons made with standard survival techniques
- Estimates of treatment effect more precise under joint model

Appendix

For Further Reading

Cook, R. J. and J. F. Lawless (2007). *The Statistical Analysis of Recurrent Events.* Statistics for Biology and Health. Springer.

Cowling, B. J., J. L. Hutton, and J. E. H. Shaw (2006). Joint modelling of event counts and survival times. *J. R. Statist. Soc. C* 55(1), 31–39.

Marson, A., A. Jacoby, A. Johnson, L. Kim, C. Gamble, and D. Chadwick (2005).

Immediate versus deferred antiepileptic drug treatment for early epilepsy and single seizures: a randomised control trial.

The Lancet 365, 2007–2013.