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Our model of interest

◮ Suppose we are interested in estimating the relationship
between an outcome Y and covariates/explanatory variables
X1, ..,Xp.

◮ We might do this by fitting a regression model (e.g. linear
regression, logistic regression, Cox proportional hazards
model).

◮ e.g. linear regression:

Y = α+ β1X1 + ...+ βpXp + ǫ

where ǫ
iid
∼ N(0, σ2

ǫ
).
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Covariate measurement error

◮ For some explanatory variables, we may only have a noisy
error-prone measurement W of the true exposure/confounder
of interest.

◮ e.g. we have single measurements of blood pressure for each
subject, but we are interested in X =subject’s ‘true’ blood
pressure at entry to our study.

◮ What effects does such noise/error have?

◮ One might think that completely random noise may reduce
precision, but not bias our estimates.
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The effects of covariate measurement error in linear
regression
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More extreme measurement error
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The effects of covariate measurement error in linear
regression

◮ We will continue in this simplified setting:

Y = α+ βX + ǫ

◮ Suppose that we actually measure W = X +U, where U is an
independent measurement error.

◮ This is called the classical measurement error model.

◮ What slope β∗ do we estimate if we fit the model with W as
the covariate, instead of X?

◮ One can show:

β∗ = β
Var(X )

Var(X ) + Var(U)
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The effects of covariate measurement error in linear
regression

β∗ = β
Var(X )

Var(X ) + Var(U)

◮ The fraction on the right is what is referred to as the
reliability of the measurements.

◮ As the amount of noise/error (Var(U)) increases, the slope is
attenuated by a larger amount.

◮ The residual error in the regression also gets larger, so we
have reduced power to detect associations.

◮ With multiple covariates, biases can be both towards no
association (attenuation) or towards larger association.
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Implications for epidemiology

◮ In the absence of confounders, exposure to disease
associations are underestimated in magnitude.

◮ When we have confounders in our model, some of which are
measured with error, our exposure to disease associations will
not be properly adjusted for the confounders.

◮ When trying to determine which variables are most important
in determining an outcome, variables can seem less important
simply because they are measured imprecisely / with lots of
error.
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Allowing for covariate measurement error

◮ There are a number of statistical approaches to allowing for
the effects of covariate measurement error.

◮ In addition to some assumptions about the nature of the
errors (e.g. independence), all of them require some
information on the magnitude of the errors.

◮ To quantify the magnitude of errors, we either need:
◮ (Some) subjects to have repeated error-prone measurements,

e.g. W1 and W2, or
◮ (Some) subjects to have the true X measured, in addition to

W .

◮ We will focus on the first situation.

◮ Such data allow us to estimate the magnitude of errors
(Var(U)) and the variability of the true covariate (Var(X )).
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Regression calibration

◮ Regression calibration (RC) is one statistical approach for
correcting for the effects of covariate measurement error.

◮ Rather than using W as the covariate in our model, we use
E (X |W ) as covariate.

◮ E (X |W ) is the predicted value of X based on the error-prone
measurement W .

◮ For classical error, E (X |W ) 6= W !
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Why RC works

◮ As before, suppose:

Y = α+ βX + ǫ

◮ Then taking expectations conditional on W :

E (Y |W ) = α+ βE (X |W ),

provided ǫ is independent of W (the non-differential error
assumption).

◮ This result means that if we regress Y on with E (X |W ) as
covariate, we obtain unbiased estimates of β.
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Implementing RC

Implementing RC consists of the following steps:

1. assume a model for X and W ,

2. fit this model using data (usually from the study in question)
where some subjects have repeat error-prone measurements,

3. calculate Ê (X |W ) based on the estimated parameters,

4. run the regression model using Ê (X |W ) as the covariate,

5. adjust standard errors & confidence intervals for estimation of
Ê (X |W ).
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Fitting a model for repeated error-prone measurements

◮ Suppose we have data where subjects have W1 = X +U1, and
some subjects have a second measurement W2 = X + U2.

◮ We assume X ∼ N(µX ,Var(X )) and that

U1,U2
iid
∼ N(0,Var(U)).

◮ This is the standard one-way analysis of variance or
random-intercepts model.

◮ Fitting this model (e.g. using loneway or xtmixed in Stata)
gives us estimates of µX , Var(X ), and Var(U).
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Calculating Ê (X |W )

◮ Under this assumed model:

E (X |W ) = µX +
Var(X )

Var(X ) + Var(U)
(W − µX )

◮ For those subjects with multiple error-prone measurements,
we can use the mean of their error-prone measurements W to
predict X :

E (X |W ) = µX +
Var(X )

Var(X ) + Var(U)/k
(W − µX )

when W is the mean of k measurements.
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Stata commands for this simple setting

reshape long w, i(id) j(obs)

xtmixed w || id:

predict x_pred, fitted

reshape wide

reg y x_pred
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Inference and other settings

◮ The method generalises to the setting of multiple explanatory
variables measured with error, and to when we have some
explanatory variables measured without error (e.g. gender,
treatment group).

◮ Standard errors and confidence intervals should allow for first
stage of estimation, e.g. by using bootstrap methods.

◮ RC also gives approximately unbiased estimates for some
other model types (logistic regression, Cox regression).
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