Agreement, reliability and repeatability studies Categorical variables

Jonathan Bartlett

London School of Hygiene and Tropical Medicine

15th November 2012

Agreement for categorical data

 Today we consider agreement ('reliability') for categorical variables.

Outline

Agreement with truth

Inter-rater agreement - Cohen's kappa

Ordinal/ordered variables

<□> <□> <□> <三> <三> <三> <三> <三> ○へ⊙

Agreement with truth - detecting disease

- Suppose we are interested in how well a diagnostic test detects disease (D = 1) from non-disease (D = 0).
- ► For each subject the test either gives a positive (X = 1, indicative of disease) or negative (X = 0, indicative of no disease) result.
- For a sample of subjects we obtain their true disease status D and their test result X:

	X = 0	X = 1	Total
D = 0	а	b	a+b
D = 1	с	d	c+d
	a + c	b+d	n = a + b + c + d

Agreement with truth - detecting disease

- Sensitivity: P(X = 1 | D = 1), estimated by d/(c + d)
- Specificity: P(X = 0 | D = 0), estimated by a/(a + b)
- Positive predictive value: P(D = 1|X = 1), estimated by d/(b+d) (provided prevalence in sample is representitive of population of interest!)

	<i>X</i> = 0	X = 1	Total
D = 0	а	b	a+b
D = 1	с	d	c+d
	a + c	b+d	n = a + b + c + d

Agreement with truth

Inter-rater agreement - Cohen's kappa

Ordinal/ordered variables

Comparing 'ratings/scores/assessments' from two raters.

	$R_2 = 0$	$R_2 = 1$	Total
$R_1 = 0$	а	b	a + b
$R_1 = 1$	С	d	c+d
	a + c	b+d	n = a + b + c + d

(ロ)、(型)、(E)、(E)、 E) の(の)

Percentage agreement

- The most obvious way to summarize agreement is by % agreement.
- We can estimate this by (a+d)/n.

	$R_2 = 0$	$R_2 = 1$	Total
$R_1 = 0$	а	b	a + b
$R_1 = 1$	С	d	c+d
	a + c	b+d	n = a + b + c + d

Chance agreement

- But even if the two raters rated at random, we would expect some agreement by chance.
- This idea was the motivation behind Cohen's kappa.
- If the two raters rate randomly, their ratings on a given subject are independent.
- Based on the observed margins, we estimate P(R₁ = 0) by (a + b)/n and P(R₂ = 0) by (a + c)/n.

	$R_2 = 0$	$R_2 = 1$	Total
$R_1 = 0$	а	b	a + b
$R_1 = 1$	С	d	c + d
	a + c	b+d	n = a + b + c + d

Cohen's kappa

- ► Then 'by chance' we would expect the two to agree with 0 with prob. P(R₁ = 0) × P(R₂ = 0)
- and to agree with 1 with prob. $P(R_1 = 1) \times P(R_2 = 1)$.
- Overall chance agreement (CA) is then $P(CA) = P(R_1 = 0) \times P(R_2 = 0) + P(R_1 = 1) \times P(R_2 = 1)$
- ▶ Let *P*(*OA*) denote the overall agreement.
- Cohen's kappa is then defined as

$$\kappa = \frac{P(OA) - P(CA)}{1 - P(CA)}$$

Example

. tab simple	eA simpleB						
Radiologis t A´s	s Radiologist B's assessment						
assessment	Normal	Not norma	Total				
Normal Not normal	21 7	12 45	33 52				
Total	28	57	85				

- Overall agreement: (21+45)/85 = 0.776
- ► Agreement expected under independence: (33/85) × (28/85) + (52/85) × (57/85) = 0.538

Kappa:

$$\frac{0.776 - 0.538}{1 - 0.538} = 0.515$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The kap command

. kap simp	leA simpleB				
Agreement	Expected Agreement	Kappa	Std. Err.	Z	Prob>Z
77.65%	53.81%	0.5160	0.1076	4.80	0.0000

<□ > < @ > < E > < E > E のQ @

Dependence on marginal probabilities / prevalence

- There has been lots of discussion/analysis (over decades) about kappa and its suitability for quantifying agreement.
- Some of this focuses on its dependence on the marginal probabilities / prevalence (e.g. Feinstein 1990).
- Under certain assumptions you can show that kappa varies with prevalence, even when rater's sensitivity/specificity is constant.
- Whether this constitutes a weakness of kappa is a measure is debateable (Vach 2005).
- Indeed, the ICC/reliablity coefficient for continuous measures differs for populations with different levels of heterogeneity.

Extension to more than two categories

 Kappa can also be defined/estimated when we have more than two categories.

. use http://www.stata-press.com/data/r12/rate2, clear (Altman p. 403)

. tabulate rada radb

Radiologis |

t A´s	Rad				
assessment	Normal	benign	suspect	cancer	Total
Normal	21	12	0	0	33
benign	4	17	1	0	22
suspect	3	9	15	2	29
cancer	0	0	0	1	1
Total	28	38	16	3	85
. kap rada	radb				
	Expected				
Agreement	Agreement	Kappa	Std. Err.	Z	Prob>Z
63.53%	30.82%	0.4728	0.0694	6.81	0.0000

Outline

Agreement with truth

Inter-rater agreement - Cohen's kappa

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ordinal/ordered variables

Ordinal/ordered variables

- Sometimes the variable in question is ordinal or has a natural ordering to its levels, e.g. an integer score from 0-4.
- Cohen later proposed a modified version of kappa, in which partial 'credit' is given for 'small' disagreements.
- A number of different weighting schemes have been proposed.

86.67%	69.11%	0.56	84	0.0788	7.22	0.0000
Agreement	Expected Agreement	i t Kap	pa	Std. Err.	Z	Prob>Z
0.0000	0.3333	0.6667	1.	0000		
0.3333	0.6667	1.0000	0.	6667		
0.6667	1.0000	0.6667	0.	3333		
1.0000	0.6667	0.3333	0.	0000		
Ratings we	ighted by:					
. kap rada	radb, wgt	(w)				

Weighting schemes

The choice of weighting, and whether it is appropriate, is important to think about...

94.77%	84.09%	0.67	14	0.107	9 6.22	2 0.0000
Agreement	Expected Agreemen	d t Kaj	pa	Std. Er	r. 2	Z Prob>Z
0.0000	0.5556	0.8889	1.	0000		
0.5556	0.8889	1.0000	0.	8889		
0.8889	1.0000	0.8889	0.	5556		
1.0000	0.8889	0.5556	0.0	0000		
Ratings wei	ighted by:					
. kap rada	radb, wgt	(w2)				

More than two raters

- Extensions have also been made to the case of more than two raters.
- These are implemented in Stata's kappa (different from the kap command) command.

Conclusions

- Quantifying agreement with categorical data is more difficult than the continuous case (I think!).
- Arguable whether a single index/parameter can ever sufficiently well summarize agreement in this setting.
- The ideal (?) is to present the contingency table itself, although this becomes tricky with more than two raters.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

References

- J. Cohen (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20 (1): 3746
- A. R. Feinstein (1990). High agreement but low kappa: 1. The problems of two paradoxes. Journal of Clinical Epidemiology 43 (6):543-549
- W. Vach (2005). The dependence of Cohen's kappa on the prevalence does not matter. Journal of Clinical Epidemiology 58 (7): 655-661