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Complete case analysis

◮ Suppose we have some missing data.

◮ We have a particular analysis we want to perform, for which
some variables involved have missing values.

◮ In a complete case (or complete records) analysis (CCA), we
ignore incomplete cases, and run our analysis on the complete
ones.

◮ Obviously estimates are less precise (than a full data analysis).

◮ But are the estimates biased?

5 / 48



When is complete case analysis valid?

◮ It is sometimes stated that CCA is only unbiased if data are
missing completely at random (MCAR).

◮ Suppose we are just interested in estimating the mean of a
variable Y , i.e. E (Y ).

◮ Let R denote whether Y is observed (R = 1) or missing
(R = 0).

◮ Here CCA is unbiased if Y and R are independent, i.e.
Y ⊥ R .

◮ If there are no other variables, this means data are MCAR.
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When is complete case analysis valid?

◮ Now suppose our analysis consists of fitting a regression
model, with outcome Y , covariates X .

◮ We are interested in some aspect of the conditional
distribution of Y |X , e.g. regression coefficients β.

◮ Missing values occur either in Y , or X , or maybe both.

◮ Of course if data are MCAR, CCA is ok, because the complete
cases are still a random sample from the population.
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Simple linear regression – full data
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Missingness dependent on Y
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Missingness dependent on X
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Covariate dependent missingness

◮ Let R denote whether a subject is a complete case (R = 1) or
not (R = 0).

◮ Suppose missingness depends on X , but given X , is
independent of Y , i.e. R ⊥⊥ Y |X .

◮ Then CCA is unbiased for estimation of parameters involved
in Y |X :

f (Y |X ,R = 1) =
f (Y ,X ,R = 1)

f (X ,R = 1)
=

f (R = 1|X ,Y )f (X ,Y )

f (R = 1|X )f (X )

=
f (R = 1|X )f (X ,Y )

f (R = 1|X )f (X )

= f (Y |X )

i.e. the conditional distribution Y |X in the complete cases is
the same as in the population
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Covariate dependent missingness and Rubin’s taxonomy

◮ Let us call the assumption that R ⊥⊥ Y |X the CCA
assumption.

◮ We have not specified in which variables missingness occurs.

◮ If missingness only occurs in Y ,
the CCA assumption ≡ missing at random (MAR).

◮ Suppose we divide the covariates into X and Z , where Z is
always observed, and X is sometimes missing (denoted by
R = 1).

◮ If missingness is dependent on Z only, so R ⊥⊥ (Y ,X )|Z , then
data are MAR.

◮ But if missingness is dependent on X , or jointly on X and Z ,
then data are missing not at random (MNAR).
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CCA validity – summary

◮ CCA is always unbiased if data are MCAR.

◮ CCA can also be unbiased under certain MAR mechanisms.

◮ CCA can also be unbiased under certain MNAR mechanisms.

◮ The key is that misssingness is (conditionally) independent of
outcome Y .

◮ For more on this, see [1, 2].
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Covariate dependent missingness

◮ In some settings it may be plausible that the CCA assumption
(covariate dependent missingness), holds.

◮ Often our covariates are measured at baseline, and the
outcome Y is measured later in time.

◮ In this case, it may be plausible that missingess is independent
of the future outcome, conditional on baseline covariates.
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Covariate dependent missingness
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Covariate dependent missingness
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Covariate dependent missingness
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Covariate dependent missingness
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Covariate dependent MNAR missingness

◮ Sometimes missingness in covariates may be dependent on the
value of the covariate itself, i.e. MNAR.

◮ e.g. at baseline we ask individuals how many units of alcohol
they drink per week.

◮ Then it may be that missingness in the alcohol variable is
dependent on how much they drink.

◮ If, given the alcohol variable and the other covariates,
missingness is independent of outcome, CCA is ok.

◮ But an MAR analysis, such as using multiple imputation, will
be biased.
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Improving on the efficiency of CCA

◮ Suppose we believe a covariate is MNAR (ruling out MAR
methods), but that the CCA assumption is plausible.

◮ We could use CCA, but it is inefficient.

◮ CCA makes no use of the observed information on (Y ,Z ) in
the incomplete cases.

◮ We aim to construct an estimator which improves upon the
efficiency of CCA.
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Setup

◮ We assume interest lies in a parameter β indexing a
conditional mean model for outcome Y given covariates X
and Z :

E (Y |X ,Z ) = g(X ,Z ;β).

◮ Linear and logistic regression models are examples of
conditional mean models (although they are fully parametric).

◮ We assume Y and Z are fully observed, but X is partially
observed.

◮ We let R denote a binary indicator for whether X is observed
(R = 1) or not (R = 0).
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Estimation with full data

◮ In the absence of missing data, we can estimate β as the
solution to estimating equations of the form [3]

n
∑

i=1

d(Xi ,Zi )ǫi (β) = 0,

where d(Xi ,Zi ) is some function of (Xi ,Zi ) and

ǫi(β) = Yi − g(Xi ,Zi ;β).

◮ e.g. d(Xi ,Zi) = (1,Xi ,Zi )
T results in the ordinary least

squares estimator of β.

◮ The key to consistency is that E (d(Xi ,Zi)ǫi (β
∗)) = 0 where

β∗ denotes the true value of β.

24 / 48



Estimation with full data

◮ The estimating function has mean zero because

E (d(X ,Z )ǫ(β∗)) = E (E (d(X ,Z )ǫ(β∗)|X ,Z ))

= E (d(X ,Z )E (Y − g(X ,Z ;β∗)|X ,Z ))

= E (d(X ,Z )× 0) = 0.
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Complete case analysis estimating equation

◮ Complete case analysis consists of estimating β by solving the
estimating equations

n
∑

i=1

Rid(Xi ,Zi)ǫi (β) = 0.

◮ The estimating function (and equation) continues to have
mean zero if, as we assume, R ⊥⊥ Y |X ,Z , since

E (Rd(X ,Z )ǫ(β∗)) = E (E (Rd(X ,Z )ǫ(β∗)|X ,Z ))

= E (P(R = 1|X ,Z )d(X ,Z )E (Y − g(X ,Z ;β∗)|X ,Z )) = 0,

since E (Y |X ,Z ) = g(X ,Z ;β∗).
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Improving on the efficiency of CCA

◮ To improve upon the efficiency of CCA we have to make
additional assumptions.

◮ One approach involves specifying a model for the missingness
mechanism, P(R = 1|X ,Z ).

◮ Although estimation is possible, it is unattractive because the
model for R |X ,Z cannot be fitted directly.

◮ It would thus be difficult to select an appropriate model for
R |X ,Z .
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A model for R|Y ,Z

◮ Instead, we will posit a model P(R = 1|Y ,Z ;α), with
parameter α.

◮ Ordinarily we would use a logistic regression model, with
outcome R , and covariates some function of Y and Z .

◮ Note this is not a model for the (assumed) true missingness
mechanism, which is P(R = 1|X ,Z ).

◮ Although we assume R and Y are independent given (X ,Z ),
they are not independent conditional only on Z .

◮ This is because we pick up the effect of X on R indirectly via
Y .

28 / 48



Augmented complete case estimating equation (ACC)

◮ Given our model P(R = 1|Y ,Z ;α), and an estimate α̂ we can
estimate β as the solution to

n
∑

i=1

Rid(Xi ,Zi)ǫi (β) + (Ri − π̂i)φ(Yi ,Zi ) = 0,

where π̂i = P(Ri = 1|Yi ,Zi ; α̂).

◮ We have augmented the CCA estimating function by a term
to which all subjects contribute.

◮ This augmentation term has mean zero provided the model
P(R = 1|Y ,Z ;α) is correctly spcecified.

29 / 48



Efficiency – choosing d(X ,Z ) and φ(Y ,Z )

◮ We gain efficiency because the incomplete cases now
contribute to the estimation of β.

◮ The efficiency depends on our choices of the functions
d(X ,Z ) and φ(Y ,Z ).

◮ For simplicity, we choose d(X ,Z ) as we would with full data.
e.g. d(X ,Z ) = (1,X ,Z )T for OLS.

◮ When α is known, the optimal choice is

φ(Y ,Z ) = −E (d(X ,Z )ǫ(β∗)|R = 1,Y ,Z ).

30 / 48



Efficiency – choosing d(X ,Z ) and φ(Y ,Z )

◮ When α has to be estimated, the optimal choice for φ(Y ,Z )
becomes more complicated.

◮ For simplicity, we use φ(Y ,Z ) = −E (d(X ,Z )ǫ|R = 1,Y ,Z ).

◮ This expectation depends on aspects of the joint distribution
of the variables about which we have not made any
assumptions, and β∗.

◮ We shall posit a model for f (X |R = 1,Y ,Z ), and use this to
approximate the above expectation.

◮ Important to note that if we get this model wrong, we will not
introduce bias (although efficiency will be affected).
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Algorithm for augmented complete case estimator

1. Posit model for P(R |Y ,Z ), parametrized by α, and estimate
via maximum likelihood, giving α̂.

2. Posit parametric model for f (X |Y ,Z ), and fit this using
complete cases (R = 1)

3. Multiply impute X for all subjects m times, based on fitted
model for f (X |Y ,Z ). Let Xij denote jth imputation of Xi .

4. Estimate β as the solution β̂ to
n

∑

i=1

Rid(Xi ,Zi)ǫi (β̂) + (Ri − π̂i)φ̂(Yi ,Zi ) = 0,

where

φ̂(Yi ,Zi ) = −
1

m

m
∑

j=1

d(Xij ,Zi )ǫij(β̂)

and

ǫij(β) = Yi − g(Xij ,Zi , β).
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Guaranteeing an efficiency improvement

◮ We actually use a slightly more complicated estimator.

◮ The modification we use ensures that we are guaranteed
(asymptotically) to obtain an efficiency gain over CCA.
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Simulation study

We simulated datasets for n = 1, 000 independent subjects as
follows:

(

X

Z

)

∼ N

((

0
0

)

,

(

1 0.25
0.25 1

))

Y |X ,Z ∼ N(β0 + βXX + βZZ , σ
2)

with β0 = 0, βX = 1, βZ = 1, and σ2 chosen so that R2 = 0.1.
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Missingness mechanisms

Values of X were made missing according to two mechanisms:

◮ P(R = 1|X ,Z ) = expit(X ).

◮ P(R = 1|X ,Z ) = expit(X − Z ).

For both mechanisms P(R = 1) = 0.5 marginally.
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Estimation methods

β0, βX and βZ were estimated using:

◮ Complete case analysis.

◮ Multiple imputation (m = 10 imputations) assuming X |Y ,Z

is normal and X is MAR.

◮ The proposed augmented complete case (ACC) approach,
assuming P(R |Y ,Z ) = expit(α0 + αYY + αZZ ), and using
m = 10 imputations in Monte-Carlo integration.

Note that the assumed model for P(R = 1|Y ,Z ) is (not exactly)
correctly specified for the missingness mechanisms used.
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Simulation results

Mean (SD) of estimates across 1,000 simulations

Estimator β0 = 0 βX = 1 βZ = 1

P(R = 1|X ,Z ) = expit(X )
CCA -0.002 (0.243) 1.003 (0.237) 0.989 (0.231)
ACC 0.004 (0.244) 0.999 (0.234) 0.992 (0.169)
MI -0.378 (0.182) 1.006 (0.238) 1.031 (0.166)

P(R = 1|X ,Z ) = expit(X − Z )
CCA -0.008 (0.254) 1.007 (0.236) 0.987 (0.241)
ACC -0.003 (0.251) 1.004 (0.232) 0.992 (0.197)
MI -0.381 (0.184) 1.008 (0.237) 0.882 (0.183)
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Simulation conclusions

◮ ACC approach is approximately unbiased, despite mild
mis-specification of missingness model under assumed MNAR
mechanism.

◮ At least for setup here, ACC improves efficiency for βZ as
much as MI.

◮ It does not recover as much information about β0 as MI.

◮ Neither ACC nor MI recover information about βX .

◮ With missingness dependent on X , MI is badly biased for β0,
little bias for βX and small or moderate bias for βZ .
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NHANES example

◮ We illustrate the ACC approach with data from the 2003-2004
National Health and Nutrition Examination Survey
(NHANES).

◮ We focus on a linear model for how SBP depends on reported
average number of drinks consumed per day, adjusting for age
and BMI.

◮ Of 2,111 participants, 720 (34.1%) are missing the alcohol
variable.

◮ It seems a priori plausible that missingness in this is
dependent on the number of drinks, and perhaps age (and
BMI), and given these independent of SBP.

◮ In contrast, the MAR assumption is arguably implausible.
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Model for P(R = 1|Y ,Z )

Variable Odds ratio (95% CI) p-value

Age (decades above 50) 0.763 (0.723, 0.805) < 0.001
BMI (kg/m2) 0.978 (0.961, 0.996) 0.019
SBP (per 10mmHg above 125) 1.08 (1.01, 1.16) 0.020
SBP2 (per 10 mmHg above 125)2 0.979 (0.963, 0.996) 0.015

Those with low or high SBP have less chance of reporting alcohol
consumption.

Consistent with heavy drinkers and tee-totalers being less likely to
report alcohol consumption.
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Estimation methods

◮ We estimated parameters of a linear model for SBP, with age,
age2, BMI and log(no. of drinks+1) as covariates.

◮ We used CCA, ACC, and MI assuming MAR.

◮ For ACC and MI, we used a negative binomial imputation
model to impute missing no. of drinks, given the other
variables.

◮ 200 imputations were used for both ACC and MI.

◮ Sandwich SEs for ACC, and Rubin’s rules with sandwich
variance estimator for MI.
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Estimated dependence of SBP on age, BMI and no. of

drinks

Estimates (SEs)

Variable CCA ACC MI

Age (decades above 50) 3.94 (0.26) 3.87 (0.24) 3.88 (0.21)
Age2 (decades above 50)2 0.26 (0.14) 0.32 (0.11) 0.30 (0.12)
BMI (kg/m2) 0.41 (0.080) 0.40 (0.065) 0.32 (0.070)
No. of drinks* 1.27 (0.58) 1.29 (0.58) 1.51 (0.65)
Constant** -1.93 (0.80) -2.13 (0.75) -2.36 (0.81)

* loge(average no. drinks per day + 1)

** SBP centred at 125 mmHg
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Conclusions

◮ Differences between MI and ACC are less dramatic here.

◮ Suggestion that MI is overestimating the alcohol effect, but
difficult to be sure.

◮ Estimated intercept from MI is also somewhat larger.

◮ Estimates from ACC are more precise than from CCA.
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Conclusions

◮ Covariate dependent missingness is sometimes more plausible
than MAR.

◮ MI assuming MAR can be badly biased for the intercept
parameter when a covariate is MNAR, independent of
outcome.

◮ Our approach improves upon CCA efficiency.

◮ But one should be careful about specifying the model for
P(R = 1|Y ,Z ) correctly.

◮ Stata software for linear models: net from

http://missingdata.lshtm.ac.uk/stata then select
AUGCCA.

◮ Extensions to multivariate X , with non-monotone missingness,
should be possible.
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