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Setting and question

◮ Binary outcome Y , exposure X , confouders C .

◮ In general X and/or C could be continuous, and we can use
logistic regression for Y |X ,C .

◮ We may have missing values in Y , X or one or more
components of C .

◮ Let R = 1 denote complete records and R = 0 denote
incomplete records.

◮ If we drop those with missing values, when will the complete
records analysis (CRA) exposure (log) odds ratio β̂X be
(asymptotically) unbiased?
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A simplification

◮ First we assume that there no confounders C , and that
exposure X is binary.

◮ We can display the full data as

Y

0 1

X
0 a b

1 c d

◮ Odds ratio = a×d
b×c
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Outcome dependent missingness

◮ Suppose missingness is outcome dependent, with
P(R = 1|X ,Y = y) = ky , y = 0, 1.

◮ Then the expected complete records table is

Y

0 1

X
0 k0a k1b

1 k0c k1d

◮ Odds ratio = k0a×k1d
k1b×k0c

= a×d
b×c

◮ i.e. unbiased

◮ This result of course justifies the validity of odds ratios in
case-control studies.
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Exposure dependent missingness

◮ Now suppose missingness is exposure dependent, with
P(R = 1|X = x ,Y ) = kx , x = 0, 1.

◮ Then the expected complete records table is

Y

0 1

X
0 k0a k0b

1 k1c k1d

◮ Odds ratio = k0a×k1d
k0b×k1c

= a×d
b×c

◮ i.e. unbiased

◮ This result (covariate dependent missingness) holds in fact
more generally, e.g. for risk ratios and other regression models.
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Confounders

◮ Now suppose we have a categorical confounder C with levels
c = 1, .., L.

◮ Let the full data exposure/outcome table for level c of the
confounder be

Y

0 1

X
0 ac bc
1 cc dc

◮ The full data odds ratio for the exposure effect at confounder
level C = c is ac×dc

bc×cc

◮ Assuming no effect modification, we then estimate the odds
ratio by pooling across confounder levels, e.g. with
Mantel-Haenszel or logistic regression.
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Outcome/confounder dependent missingness

◮ Now suppose we have missingness dependent on Y and C , i.e.
P(R = 1|Y = y ,X ,C = c) = ky ,c , y = 0, 1, c = 1, .., L.

◮ The expected complete record table is then

Y

0 1

X
0 k0,cac k1,cbc
1 k0,ccc k1,cdc

◮ Odds ratio =
k0,cac×k1,cdc
k1,cbc×k0,c cc

= ac×dc
bc×cc

.

◮ i.e. still unbiased
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Exposure/confounder dependent missingness

◮ Now suppose we have missingness dependent on X and C , i.e.
P(R = 1|Y ,X = x ,C = c) = kx ,c , x = 0, 1, c = 1, .., L.

◮ The expected complete record table is then

Y

0 1

X
0 k0,cac k0,cbc
1 k1,ccc k1,cdc

◮ Odds ratio =
k0,cac×k1,cdc
k0,cbc×k1,c cc

= ac×dc
bc×cc

.

◮ i.e. still unbiased
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Exposure/outcome dependent missingness

◮ In general if missingness depends on X and Y , we will obtain
biased estimates of the exposure effect.

◮ A special case exists however where we still obtain unbiased
estimates.

◮ Specifically if P(R = 1|Y ,X ,C ) = s(X ,C )× t(Y ,C ) for
some functions s(X ,C ), t(Y ,C ).

◮ This result can be viewed as applying the previous results in
turn.

12 / 35



Exposure/outcome dependent missingness continued

◮ This could arise for example if two variables are partially
observed with one mechanism depending on (X ,C ) and the
second depending on (Y ,C ).

◮ If we let R1 and R2 denote the observation indicators for the
two variables, we need

P(R = 1|Y ,X ,C ) = P(R1 = 1,R2 = 1|Y ,X ,C )

= P(R1 = 1|X ,C ) × P(R2 = 1|Y ,C )
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Summary

The results apply more generally, to continuous exposure X ,
multiple confounders C , with logistic regression used for
estimation.

Letting β̂0, β̂X , β̂C denote the corresponding log odds ratios, we
have

Missingness dependent on β̂0 β̂X β̂C

Neither Y , X nor C Unbiased Unbiased Unbiased
Y Biased Unbiased Unbiased
X ,C Unbiased Unbiased Unbiased
Y ,C Biased Unbiased Biased
Y ,X ,C Biased Biased* Biased

* in general
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MCAR/MAR/MNAR

◮ So far we have not said which variable(s) have missing values.

◮ Depending on what type of mechanism is assumed to be in
action and which variable(s) have missing values, missingness
could be MCAR, MAR or even MNAR.

◮ e.g. if exposure is partially observed, with missingness
dependent on exposure level, and possibly confounders, this is
MNAR.

◮ But so long as missingness is independent of Y , given X and
C , β̂X is unbiased.
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Extensions

◮ If we include interactions between X and some components of
C , the results continue to apply.

◮ With survival data, if the event rate is low and follow-up
similar for subjects, the results also apply approximately due
to link between logistic and Cox regression.

◮ In this case the event indicator takes the place of the binary
outcome Y .
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Caveat

◮ The arguments implicitly assume that the outcome model is
correctly specified.

◮ i.e. no effect interactions (if not included).

◮ Provided any misspecifications are not severe, results should
still approximately apply (see illustrative) example.
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Application in practice

◮ The results depend on how the probability of being a
complete record depend on (Y ,X ,C ).

◮ In some cases our study specific knowledge may support one
of the sufficient conditions needed for βX to be estimated
without bias.
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Missingness in a confounder

Divide the confounders into C = (C1,C2), with C1 partially
observed

Missingness in C1 Plausible missingness β̂X unbiased
found related to mechanism

C2 C2 Yes
X and possibly C2 X and C2 Yes
Y and possibly C2 Y and C2 Yes

X , Y and possibly C2

X and Y Generally no
C and X Yes
C and Y Yes
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Missingness in exposure

Missingness in X Plausible missingness β̂X unbiased
found related to mechanism

C C Yes
Y Y Yes

C and Y

C and Y Yes
X and Y Generally no
X and C Yes
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Missingness in outcome

Missingness in Y Plausible missingness β̂X unbiased
found related to mechanism

X X Yes
C C Yes

X and C

X and C Yes
Y and C Yes
X and Y Generally no
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Investigating missingness

◮ So in some situations we may from the data be able to make
some tentative conclusions regarding missingness and thus the
unbiasedness of β̂X .

◮ With missingness in multiple variables things inevitably
become more complex.

◮ Here our substantive knowledge is crucial to judge the
plausibility of assumptions.
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Illustrative example

◮ We illustrate using data from a cohort study of professional
pilots in the UK [1].

◮ This study’s aim was to include all professional flight crew
who held a license at some point between 1989 and 1999.

◮ For our analyses, follow-up starts at recruitment, where
various variables of interest were recorded.

◮ Crew data was linked to UK health registers to obtain vital
status up to 2006.
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Outcome model specification

◮ For this illustrative analysis, we consider a binary outcome Y

representing death in the first 15 years of follow-up.

◮ We consider a exposure ‘number of accrued flying hours’ at
baseline, categorised into < 400 hours, 400 − 5499, and
> 5500 hours.

◮ Confounders were age at entry, smoking status, BMI and type
of route.

◮ Our analyses here use data from 11,841 male crew, who had
complete data at baseline for exposure and confounders.
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Simulation setup

◮ We first fitted a logistic regression model to the full data.

◮ For each of 8 missingness mechanisms, we make data missing
and perform the complete records analysis.

◮ For each mechanism we repeat 10,000 times, and present the
mean estimates across 10,000 realizations of missingness
process.
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Results

Log odds ratios

Missingness 400-5499 hours ≥ 5500 hours
dependent on vs < 400 hours vs < 400 hours

Full data 0.55 0.59
MCAR 0.57 0.61
Event indicator (Y ) 0.56 0.61
Age (C ) 0.51 0.54
Age and flying hours (C ,X ) 0.52 0.56
Event indicator and age (Y ,C ) 0.66 0.74
Event indicator and flying hours (Y ,X ) 1.59 2.64
Event indicator and flying hours* (Y ,X ) 0.59 0.67

* P(R = 1|Y ,X ,C ) = s(X )t(Y )
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Interpretation

◮ For the most part, results are as expected from theory.

◮ For missingness dependent on outcome and confounder (age),
estimates are somewhat different to full data estimates.

◮ This is likely due to the fact the outcome model is not exactly
correctly specified: the exposure effect varies somewhat by
age.

◮ Missingness dependent on C means complete records have
different C distribution, leading to some small bias.
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Summary

◮ Estimates of exposure effect from complete records logistic
regression are unbiased under a wide range of missingness
assumptions [2].

◮ Most of the results presented are not new [3, 4, 5], but
perhaps are not widely appreciated.

◮ Directed acyclic graphs can be useful for considering possible
missingness mechanisms and thus plausiblity of assumptions
[6].
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Summary

◮ Of course even when CRA is unbiased, it is not efficient.

◮ If missingness is in confounders, alternative approaches will
gain efficiency.

◮ If the data are missing at random, multiple imputation can be
used.

◮ If a confounder is missing not at random, but independently
of outcome, a weighting/imputation approach can be used to
improve upon CRA efficiency [7].
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