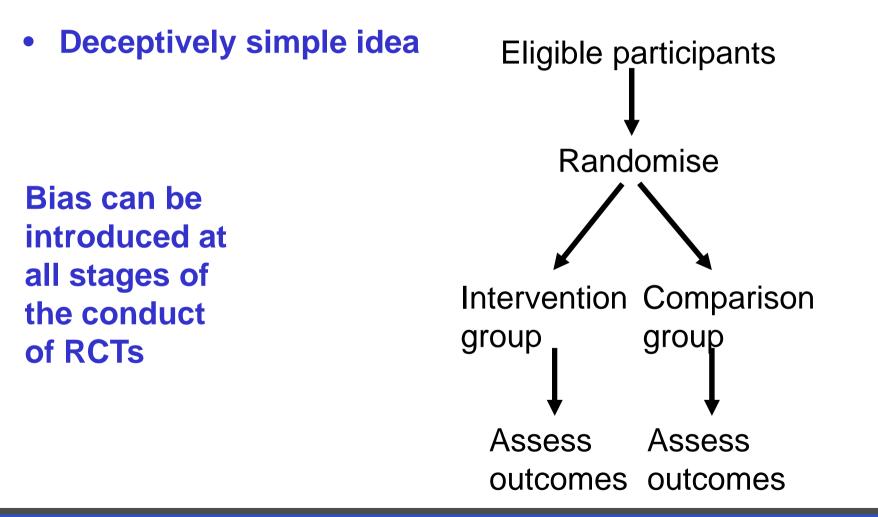
Empirical evidence on sources of bias in randomised controlled trials: methods of and results from the BRANDO study

Jonathan Sterne


School of Social and Community Medicine, University of Bristol, UK

Acknowledgements:

Tony Ades, Bodil Als-Nielsen, Douglas Altman, Ethan Balk, Rebecca Beynon, John Carlin, Jon Deeks, Matthias Egger, Ross Harris, Julian Higgins, Lise Lotte Gluud, Christian Gluud, John Ioannidis, Peter Juni, Julie Pildal, Jelena Savovic, Ken Schulz, Nicky Welton, Lesley Wood

Randomised Controlled Trials (RCTs)

- Trials provide causal inferences about the effect of the intervention if we randomise sufficient individuals and avoid selection and performance biases
- This can be undermined by:
 - Inadequate generation of randomisation sequence

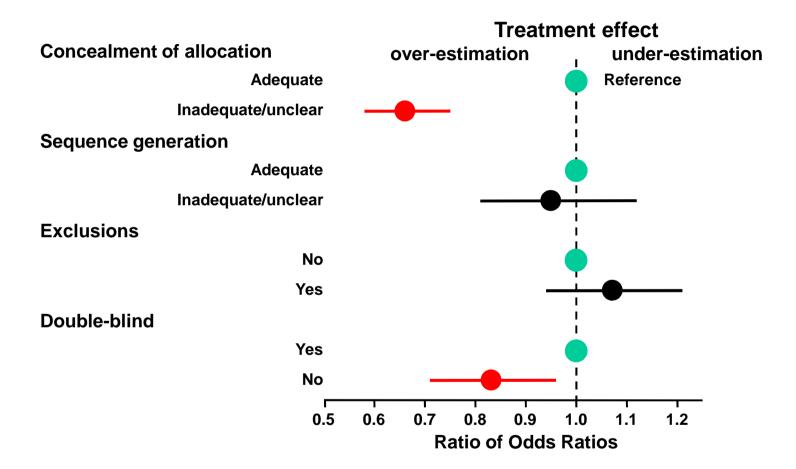
- Trials provide causal inferences about the effect of the intervention if we randomise sufficient individuals and avoid selection and performance biases
- This can be undermined by:
 - Inadequate generation of randomisation sequence
 - Inadequate concealment of allocation

Problems with randomisation may cause selection bias, if participants or healthcare providers can predict treatment allocation

- Trials provide causal inferences about the effect of the intervention if we randomise sufficient individuals and avoid selection and performance biases
- This can be undermined by:
 - Inadequate generation of randomisation sequence
 - Inadequate concealment of allocation
 - Inadequate blinding
- Performance bias
 - Care of intervention and control groups not comparable
- Detection bias
 - Measurement of outcomes not comparable

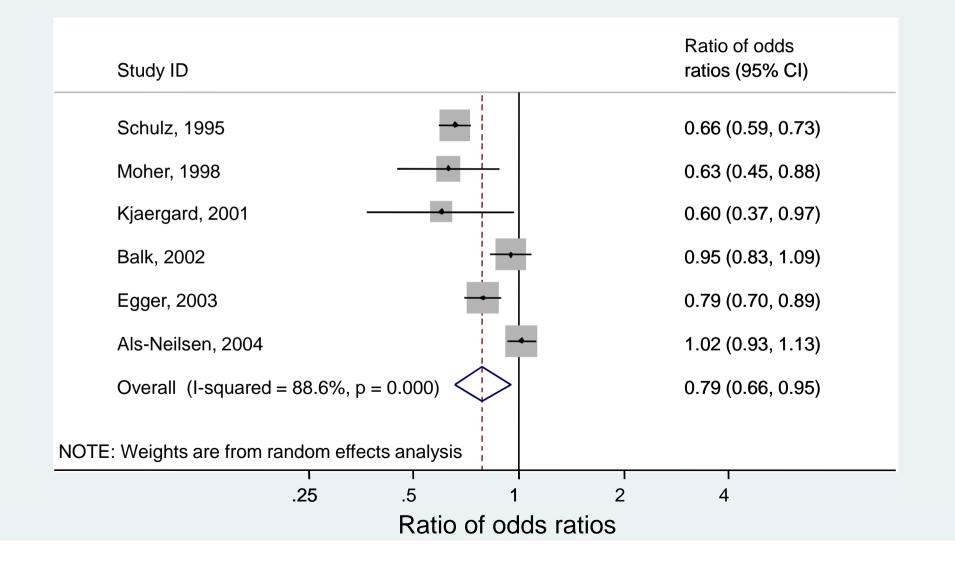
- Trials provide causal inferences about the effect of the intervention if we randomise sufficient individuals and avoid selection and performance biases
- This can be undermined by:
 - Inadequate generation of randomisation sequence
 - Inadequate concealment of allocation
 - Inadequate blinding
 - Excluding patients, or analysing them in the wrong group

Including biased trials will cause meta-analyses to be biased



- Identify a large number of meta-analyses
- Record characteristics of individual studies (allocation concealment, blinding, type of publication, language etc.)
- Compare treatment effects *within* each meta-analysis (for example not double blind vs. double blind)
- Estimate ratio of odds ratios

University of


Empirical evidence of bias 33 meta-analyses, 250 RCTs

Schulz KF, Chalmers I, Hayes RJ, Altman DG. (1995) Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. *JAMA* **273**: 408-412.

Allocation concealment: combined evidence

Combined analysis of three empirical studies: blinding

Comparison (No. of meta-analyses)	No. of trials*	Ratio of odds ratios (95% Cl)	Variability in bias (P value)
Overall (76)	314 vs. 432	0.93 (0.83, 1.04)	0.11 (p<0.001)
Objective outcomes (44)	210 vs. 227	1.01 (0.92, 1.10)	0.08 (p<0.001)
Subjective outcomes (32)	104 vs. 205 — 🖶	0.75 (0.61, 0.93)	0.14 (p=0.001)
* Non blinded vs. blinded	0.5 0.75 1 1 Ratio of odds	.5 2 ratios	
	Non blinded Nor more beneficial less	n blinded s beneficial	

Combined analysis of three empirical studies: allocation concealment

Comparison (No. of meta-analyses)	No. of trials*	Ratio of odds ratios (95% Cl)	Variability in bias (P value)
Overall (102)	532 vs 272	0.83 (0.74, 0.93)	0.11 (p<0.001)
Objective outcomes (62)	310 vs 174	0.91 (0.80, 1.03)	0.11 (p<0.001)
Subjective outcomes (40)	222 vs 98 🕂	0.69 (0.59, 0.82)	0.07 (p=0.011)
* Inadequately/unclearly concealed <i>vs.</i> adequately concealed Inad	0.5 0.75 1 1 Ratio of odds dequately concealed Ina more beneficial les	dequately concealed	

Wood, L., Egger, M., Gluud, L.L., Schulz, K., Jüni, P., Altman, D.G., Gluud, C., Martin, R.M., Wood, A.J.G. and Sterne, J.A.C. (2008) Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. *BMJ*, **336**: 601-605.

Emprical evidence on the effect of flaws in trial conduct will always be limited by imperfect reporting of trials

J. R. Statist. Soc. A (2009) 172, Part 1, pp. 119–136

Models for potentially biased evidence in meta-analysis using empirically based priors

N. J. Welton and A. E. Ades,

University of Bristol, UK

J. B. Carlin,

Murdoch Children's Research Institute and University of Melbourne, Australia

D. G. Altman

Centre for Statistics in Medicine, Oxford, UK

and J. A. C. Sterne

University of Bristol, UK

[Received April 2007. Revised February 2008]

Summary. We present models for the combined analysis of evidence from randomized controlled trials categorized as being at either low or high risk of bias due to a flaw in their conduct.

Effects of flaws in the conduct of trials

- Change in average intervention effect (bias), δ_0
 - the focus of most previous research, (measured as log ROR)
- Between-meta-analysis variability in average effect of bias, ϕ^2
- Increases in between-trial heterogeneity, κ^2
- In addition, there is uncertainty in the mean bias δ_0 : $\delta_0 \sim N(D_0, \sigma_{D_0}^2)$
- We can estimate δ_0 and κ^2 using data from a single meta-analysis, but D_0 or φ^2 can only be estimated using collections of meta-analyses

Possible analysis models

- 1. Fixed effect of intervention within meta-analyses (among trials at low risk of bias
- 2. Extends model 1 to allow κ^2 to vary between metaanalyses
- 3. Extend model 1 to allow random effects of intervention within meta-analyses
- 4. Combine models 2 and 3

How might we use evidence about the effects of flaws in trial conduct, from metaepidemiological studies, to combine data from studies at high and low risk of bias in meta-analyses?

Consequences for a single study

• Given values for D_0 , κ^2 , φ^2 and $\sigma_{D_0}^2$, we can obtain the posterior distribution of the true intervention effect in a single study at high risk of bias from a new metaanalysis m^* :

$$E(\mu_{j,m^*} | \{ \hat{\beta}_{j,m^*}, \sigma_{j,m^*}^2 \}) = \hat{\beta}_{j,m^*} - D_0,$$

Var $(\mu_{j,m^*} | \{ \hat{\beta}_{j,m^*}, \sigma_{j,m^*}^2 \}) = \sigma_{j,m^*}^2 + \kappa^2 + \varphi^2 + \sigma_{D_0}^2$

Fixed-effect meta-analysis combining studies at high (*H*) and low (*L*) risk of bias

$$E(\mu_{m^*} | \text{ all evidence}) = \begin{bmatrix} \sum_{j=1}^{n_L} \frac{\hat{\beta}_{j,m^*}}{\sigma_{j,m^*}^2} + \sum_{j=(n_L+1)}^{(n_L+n_H)} \left(\frac{\hat{\beta}_{j,m^*} - D_0}{\sigma_{j,m^*}^2 + \kappa^2} \right) \\ \sum_{j=1}^{n_L} \frac{1}{\sigma_{j,m^*}^2} + \sum_{j=(n_L+1)}^{(n_L+n_H)} \left(\frac{1}{\sigma_{j,m^*}^2 + \kappa^2} \right) \\ w \end{bmatrix}$$

where $w = \left[1 + \sum_{j=(n_L+1)}^{(n_L+n_H)} \left(\frac{\sigma_{D_0}^2 + \varphi^2}{\sigma_{j,m^*}^2 + \kappa^2} \right) \right]^{-1}$
 $V(\mu_{m_{new}} | \text{ all evidence}) = \left[\sum_{H \text{ Studies}} \frac{1}{\sigma_{j,m_{new}}^2} + \sum_{L} \left(\frac{1}{\sigma_{j,m_{new}}^2 + \kappa^2} \right) w \right]^{-1}$

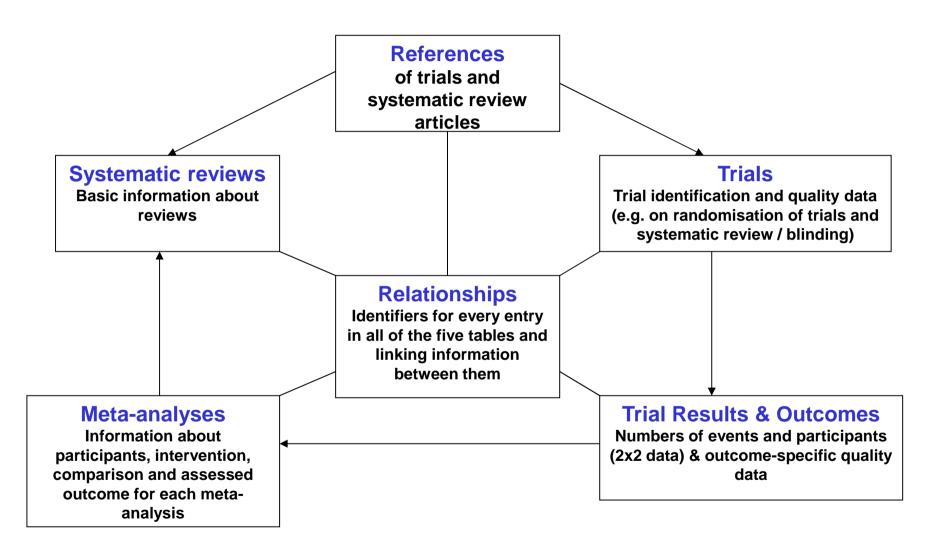
Implications

- Informational value of studies at high risk of bias:
 - 1. Intervention effect from a large type *H* study has minimum variance $\kappa^2 + \sigma_{D_0}^2 + \varphi^2$
 - 2. A meta-analysis of n_H large type *H* studies has minimum variance $\kappa^2 / n_H + \sigma_{D_0}^2 + \varphi^2$
 - 3. Conducting large meta-epidemiological studies could in principle reduce $\sigma_{D_0}^2$, but φ^2 is a characteristic of the bias
 - 4. However, φ^2 may be lower in certain situations (eg when outcomes are objectively assessed)

The BRANDO study

(Bias in Randomised and Observational Studies)

- Combine data from all existing empirical studies in a single database
- Final database contains data on 234 meta-analyses that included 1973 unique trials
- Aim to quantify effects of flaws in trial conduct on:
 - Average intervention effects
 - Uncertainty about intervention effects

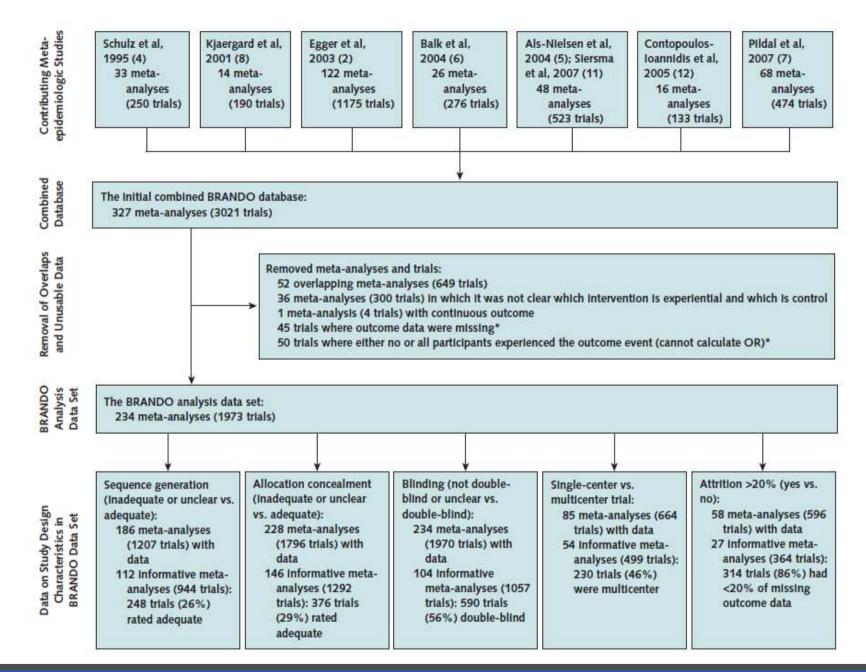


Contributing studies

Contributing study	No. of meta-analyses (trials)	Clinical areas / types of interventions	No. of meta-analyses (trials) in final database
Als-Nielsen et al.	48 (523)	Various	46 (506)
Balk et al.	26 (276)	Circulatory, Paediatrics, Infection, Surgery	23 (251)
Contopoulos-Ioannidis et al.	16 (133)	Mental health	11 (94)
Egger et al.	165 (1776)	Various	121 (1115)
Kjaergard et al.	14 (190)	Various	8 (72)
Pildal et al.	68 (474)	Various	67 (460)
Schulz et al.	33 (250)	Pregnancy & childbirth	27 (210)

Database structure

Removing overlaps


- 1. Assign unique ID (MEDLINE, EMBASE, or ISI Web of Science) to each trial and meta-analysis
- 2. Identify sets of meta-analyses containing any trial in common
- 3. Exclude meta-analyses from each set until there was minimal overlap between those remaining
 - Exclude those with fewer assessed trial characteristics in preference to those with more
 - Exclude those from less recently reviews, in preference to more recently published
 - Exclude those including fewer trials in preference to those including more
- 4. Randomly remove trials from meta-analyses with minimal overlap

Classification of outcomes

Type of outcome	No of meta- analyses	Outcome group*	
Adverse events (as adverse effects of the treatment)	6	Subjective	
All-cause mortality	64	Mortality	
Cause-specific mortality	2	Subjective	
Clinician-assessed outcomes (e.g. BMI, blood pressure, lung function)	51	Mostly subjective	
Composite endpoint including mortality and/or major morbidity	9	Mix	
Global improvement	4	Subjective	
Health perceptions (person's own view of general health)	0	Subjective	
Laboratory-reported outcomes (e.g. blood components, tissue analysis, urinalysis)	29	Mostly objective	
Lifestyle outcomes (including diet, exercise, smoking)	12	Mostly subjective	
Major morbidity event (including myocardial infarction, stroke, hemorrhage)	6	Subjective	
Mental health outcomes (including cognitive function, depression, anxiety)	16	Subjective	
Other outcomes (not classified elsewhere)	7	Mix	
Pain (extent of pain a patient is experiencing)	13	Subjective	
Perinatal outcomes	32	Objective (some potentially influenced)	
Pregnancy outcomes	11	Objective	
Quality of life (including ability to perform physical, daily and social activities)	0	Subjective	
Radiological outcomes (including abnormalities, ultrasound, MRI results)	12	Subjective	
Resource use (including cost, hospital stay duration, no. of procedures)	4	Objective, potentially influenced by judgement	
Satisfaction with care (including patient views and clinician assessments)	0	Subjective	
Surgical and device-related outcomes	16	Mostly subjective	
Symptoms or signs of illness or condition	35	Subjective	
Withdrawals/dropouts/compliance	16	Objective, potentially influence by judgement	

Summarised as mortality, other objective, subjective/mixed

Numbers of trials

Sequence generation	Allocation concealment	Blinding	All	Mortality	Objective	Subjective
Adequate	Adequate	Double blind	60	12	22	26
Adequate	Adequate	Not double blind*	31	4	10	17
Adequate	Inadequate*	Double blind	67	9	22	36
Adequate	Inadequate*	Not double blind*	115	16	42	57
Inadequate*	Adequate	Double blind	95	9	35	51
Inadequate*	Adequate	Not double blind*	33	6	10	17
Inadequate*	Inadequate*	Double blind	317	44	92	181
Inadequate*	Inadequate*	Not double blind*	453	57	135	261
Total			1171	157	368	646

Issues in analysis and interpretation

- Different numbers of trials and included meta-analyses in different analyses
 - Fewer studies assessed sequence generation than allocation concealment or blinding
 - Only meta-analyses containing trials with and without characteristic contribute to analyses
- Bias models were fitted using WinBUGS assuming vague prior distributions.
 - Two parallel MCMC chains, with a burn-in of 50,000 iterations followed by at least a further 500,000 iterations, with a thinning of 5.
- Many variance components are imprecisely estimated
 - Analyses were substantially delayed because of sensitivity to priors on variances
 - Based on a simulation study, we chose a modified Inverse Gamma(0.001, 0.001) prior with increased weight on small values
- Comparisons are of presence versus absence of methodological flaw (high versus low risk of bias)

Annals of Internal Medicine Research and Reporting Methods

Influence of Reported Study Design Characteristics on Intervention Effect Estimates From Randomized, Controlled Trials

Jelena Savović, PhD; Hayley E. Jones, PhD; Douglas G. Altman, DSc; Ross J. Harris, MSc; Peter Jüni, MD; Julie Pildal, MD, PhD; Bodil Als-Nielsen, MD, PhD; Ethan M. Balk, MD, MPH; Christian Gluud, DrSciMed; Lise Lotte Gluud, DrSciMed; John P.A. Ioannidis, MD, DSc; Kenneth F. Schulz, PhD, MBA; Rebecca Beynon, MA; Nicky J. Welton, PhD; Lesley Wood, PhD; David Moher, PhD; Jonathan J. Deeks, PhD; and Jonathan A.C. Sterne, PhD

Published evidence suggests that aspects of trial design lead to biased intervention effect estimates, but findings from different studies are inconsistent. This study combined data from 7 metaepidemiologic studies and removed overlaps to derive a final data set of 234 unique meta-analyses containing 1973 trials. Outcome measures were classified as "mortality," "other objective," "or subjective," and Bayesian hierarchical models were used to estimate associations of trial characteristics with average bias and betweentrial heterogeneity. Intervention effect estimates seemed to be exaggerated in trials with inadequate or unclear (vs. adequate) random-sequence generation (ratio of odds ratios, 0.89 [95% credible interval {Crl}, 0.82 to 0.96]) and with inadequate or unclear (vs. adequate) allocation concealment (ratio of odds ratios, 0.93 [Crl, 0.87 to 0.99]). Lack of or unclear double-blinding (vs. doubleblinding) was associated with an average of 13% exaggeration of intervention effects (ratio of odds ratios, 0.87 [Crl, 0.79 to 0.96]), and between-trial heterogeneity was increased for such studies (SD increase in heterogeneity, 0.14 [Crl, 0.02 to 0.30]). For each characteristic, average bias and increases in between-trial heterogeneity were driven primarily by trials with subjective outcomes, with little evidence of bias in trials with objective and mortality outcomes. This study is limited by incomplete trial reporting, and findings may be confounded by other study design characteristics. Bias associated with study design characteristics may lead to exaggeration of intervention effect estimates and increases in between-trial heterogeneity in trials reporting subjectively assessed outcomes.

Ann Intern Med. 2012;157:429-438. www.annals.org For author affiliations, see end of text. This article was published at www.annals.org on 4 September 2012.

School of Social and

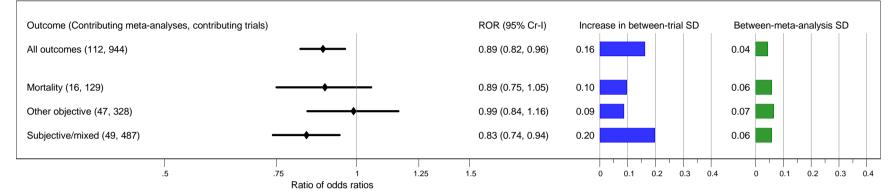
Community Medicine

Health Technology Assessment 2012; Vol. 16: No. 35 ISSN 1366-5278

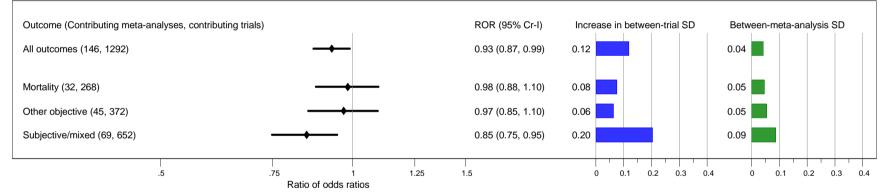
Influence of reported study design characteristics on intervention effect estimates from randomised controlled trials: combined analysis of metaepidemiological studies

J Savović, HE Jones, DG Altman, RJ Harris, P Jűni, J Pildal, B Als-Nielsen, EM Balk, C Gluud, LL Gluud, JPA Ioannidis, KF Schulz, R Beynon, N Welton, L Wood, D Moher, JJ Deeks and JAC Sterne

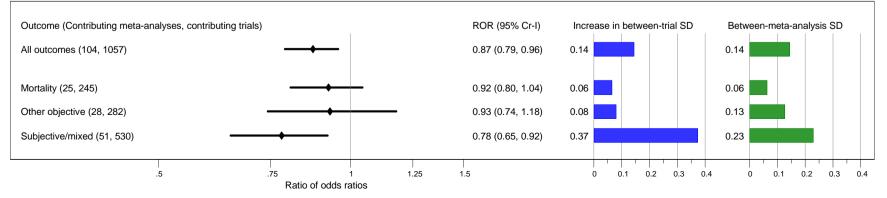
Associations between design characteristics


Study characteristic 1	Study characteristic 2	All trials	Mortality outcome	Objective outcome	Subjective outcome
Sequence generation	Allocation concealment	1171	157	368	646
Adequate	Adequate	91 (7.8)	16 (10.2)	32 (8.7)	43 (6.7)
Adequate	Inadequate/unclear	182 (15.5)	25 (15.9)	64 (17.4)	93 (14.4)
Inadequate/unclear	Adequate	128 (10.9)	15 <mark>(</mark> 9.6)	45 (12.2)	68 (10.5)
Inadequate/unclear	Inadequate/unclear	770 (65.8)	101 (64.3)	227 (61.7)	442 (68.4)
OR (95% CI)		3.01 (2.20 to 4.12)	4.31 (1.88 to 9.88)	2.52 (1.48 to 4.29)	3.01 (1.93 to 4.68)
Sequence generation	Blinding	1171	157	368	646
Adequate	Double blind	127 (10.8)	21 (13.4)	44 (12.0)	62 (9.6)
Adequate	Not double blind/unclear	146 (12.5)	20 (12.7)	52 (14.1)	74 (11.5)
Inadequate/unclear	Double blind	412 (35.2)	53 (33.8)	127 (34.5)	232 (35.9)
Inadequate/unclear	Not double blind/unclear	486 (41.5)	63 (40.1)	145 (39.4)	278 (43.0)
OR (95% CI)		1.03 (0.78 to 1.35)	1.25 (0.61 to 2.55)	0.97 (0.61 to 1.54)	1.00 (0.69 to 1.47)
Allocation concealment	Blinding	1793	328	550	915
Adequate	Double blind	283 (15.8)	65 (19.8)	93 (16.9)	125 (13.7)
Adequate	Not double blind/unclear	133 (7.4)	30 (9.1)	45 (8.2)	58 (6.3)
Inadequate/unclear	Double blind	556 (31.0)	108 (32.9)	159 (28.9)	289 (31.6)
Inadequate/unclear	Not double blind/unclear	821 (45.8)	125 (38.1)	253 (46.0)	443 (48.4)
OR (95% CI)		3.14 (2.49 to 3.96)	2.51 (1.52 to 4.15)	3.29 (2.19 to 4.94)	3.30 (2.34 to 4.66)

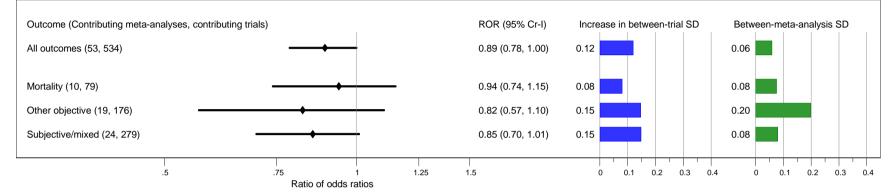
No. (%) of trials



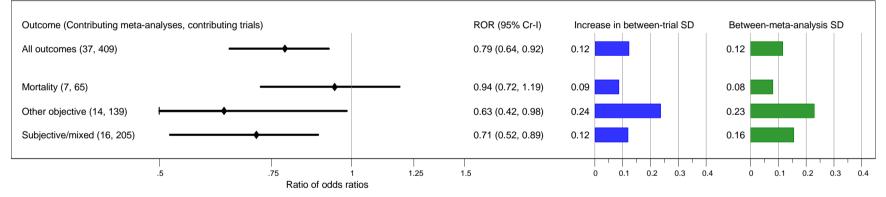
Univariable analyses


Inadequate or unclear generation of randomization sequence (versus adequate)

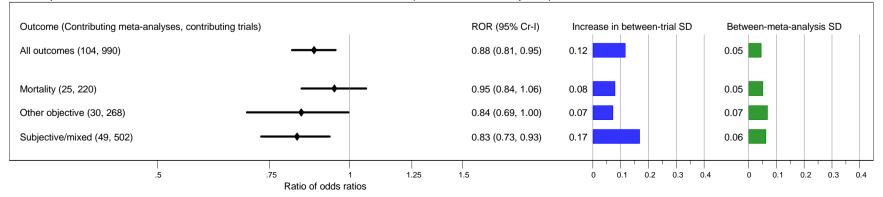
Inadequate or unclear allocation concealment (versus adequate)



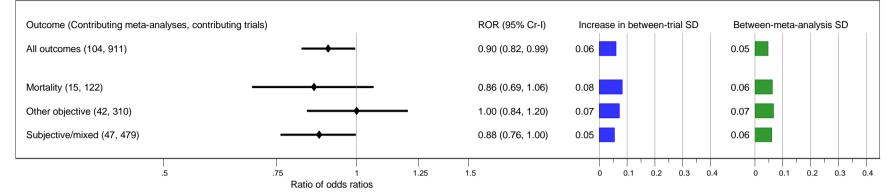
Lack of double blinding or unclear double blinding (versus double blind)



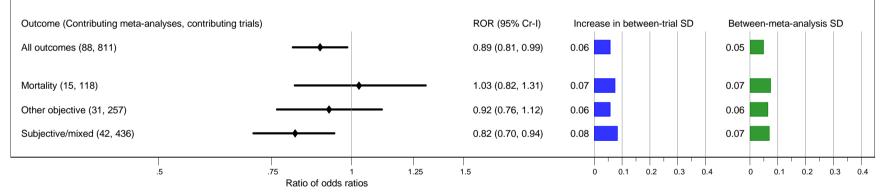
Combinations of characteristics


Inadequate or unclear sequence generation or allocation concealment (versus both adequate)

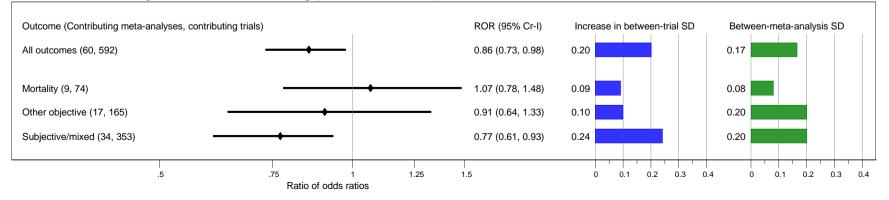
Inadequate or unclear for any of the three domains (versus all three adequate)



Inadequate or unclear allocation concealment or not double blind (versus both adequate)



Multivariable analyses


Inadequate or unclear generation of randomization sequence (versus adequate)

Inadequate or unclear allocation concealment (versus adequate)

Lack of double blinding or unclear double blinding (versus double blind)

Implications for downweighting of trials in a new meta-analysis

- For a new trial: $100 \times \frac{\sigma_i^2 + \kappa^2 + \varphi^2 + V_0}{\sigma_i^2} \%$
- For a new meta-analysis: using the formulae of Welton et al. using the distribution of trial and meta-analysis characteristics in the BRANDO database

Implications for downweighting

				effect (%)			
Study designNo. ofcharacteristichigh-riskand outcometrials	Minimum variance of trial at high risk of bias ($V_0 + \kappa^2 + \phi^2$)	Median (IQR) increase in trial- level variance (%)	Downweighting all meta-analyses	Downweighting informative meta-analyses	Excluding all trials at high or unclear risk of bias		
Inadequate or u	nclear sequen	nce generation (vs adeq	uate)				
All	901	0.030	10 (4 to 23)	12 (2 to 32)	13 (5 to 32)	217 (87 to 482)	
Mortality	116	0.020	6 (3 to 14)	11 (1 to 25)	13 (6 to 36)	119 (70 to 336)	
Objective	273	0.019	5 (3 to 11)	8 (1 to 19)	11 (2 to 32)	145 (62 to 559)	
Subjective	512	0.046	20 (8 to 39)	31 (6 to 64)	31 (11 to 56)	282 (126 to 482)	
inadequate or u	nclear allocat	ion concealment (vs ad	lequate)				
All	1380	0.017	5 (2 to 12)	9 (3 to 23)	7 (3 to 20)	150 (49 to 411)	
Mortality	233	0.011	4 (1 to 11)	8 (3 to 34)	8 (3 to 19)	121 (39 to 468)	
Objective	413	0.011	3 (1 to 6)	9 (3 to 22)	6 (3 to 13)	175 (52 to 337)	
Subjective	734	0.053	18 (7 to 40)	36 (8 to 73)	27 (7 to 59)	146 (55 to 411)	
Lack of double	blinding or un	clear double blinding (v	rs double blind)				
All	1041	0.044	13 (6 to 31)	16 (0 to 62)	15 (3 to 48)	62 (19 to 143)	
Mortality	170	0.013	4 (2 to 10)	5 (0 to 18)	5 (0 to 18)	46 (18 to 101)	
Objective	336	0.036	11 (5 to 24)	22 (0 to 67)	16 (3 to 46)	79 (22 to 202)	
Subjective	535	0.200	63 (22 to 138)	41 (1 to 175)	36 (8 to 72)	62 (19 to 140)	

Median (IOR) increase in variance of summary intervention

Future research

- Update to more recent meta-analyses and trials
- Investigate different aspects of blinding (separate blinding of participants and trial personnel from blinding of outcome assessors)
- Other trial characteristics (eg missing data)

Conclusions

- Flaws in the conduct of randomized controlled trials are important because they increase uncertainty
- Effects are most marked for subjectively assessed outcomes
 - Particularly for absence of blinding
- Patterns similar for different bias domains
 - Outcome-specific effects of flaws in the randomisation process were unexpected
- BRANDO results provide an empirical basis to include potentially biased evidence in a systematic review, by downweighting and correcting for bias

