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Overview 

Improving health worldwide www.lshtm.ac.uk 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Riley et al 2010. Meta-analysis of individual participant data: rationale, conduct, 
and reporting. BMJ 340 (7745):4521-525. 

IPD meta-analysis 



Key advantages of IPD meta-analysis: 
 

• Consistent inclusion/exclusion criteria 
 

• Analyses/modelling can be standardised across studies 
 

• Potential for including additional confounders 
 

• Missing data can be addressed using all available data 

 

IN PRACTICE: 
 

• Subgroup analysis 
 

• Inference based on multiple outcomes 
 

IPD meta-analysis 



Challenges: 
 

• Outcomes are partially or completely unobserved for some 
studies 

 

• Multiplicity of outcomes 

 

• Between-study heterogeneity 

 

•  Small number of studies 

IPD meta analysis 
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A multivariate Bayesian hierarchical model  

for handling the missing data  

in IPD meta-analysis 



Full-Bayesian analysis 
 

• Unknown parameters and missing values are estimated 
simultaneously, given the observed data. 
 

 

 

• Flexible framework for addressing between-study 
heterogeneity, and modelling multiple mixed outcomes 
 

• Offers additional advantages in the context of evidence 
synthesis when prior evidence is available 
 

• Requires that all variables explaining missingness are included 
in the analysis model 

 

A Bayesian approach 



A Bayesian approach 



Diffuse priors    (parameters constant across studies) 
 

• Level-2 covariance matrix 

 

 

      
 

Inverse-Wishart prior could be used but uses a single parameter to 
control the precision of all elements of the matrix -> informative  
 

• Level-1 covariance matrix 

 

 
 

• Regression Coefficients 
 

A Bayesian approach 
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Alternative methods 



 

Complete-case analysis (CCA) 
 

 

– Patients with missing observations are dropped 

– Assumes data are MCAR 

– Typically leads to biased/imprecise results 

Alternative methods 



Multiple Imputation (MI) 
 

• Each missing value is replaced by a set of plausible values drawn 
from the posterior distribution of missing data given the observed 
 

– Imputation model is estimated separately from the analysis 
model (allows for the inclusion of ‘auxiliary variables’) 

– Recognises the uncertainty associated with the missing data and 
the estimation of the imputed values  

– Implementation is relative simple and available in a wide range of 
software 

Alternative methods 



Alternative methods 



 

• In standard (non-hierarchical) settings, MI via FCS approximates the 
posterior distribution implied by the joint model (Gelman et al 2012) 

 

• Previous work comparing JM with MI on correlated mixed outcomes 
found similar performance (He and Belin 2014) 

 

•  Unclear whether this holds in hierarchical settings: 

 
– Correlation structure is not explicitly partitioned between patient and study-

level components 

 

– Marginal distribution may provide information about the conditional 
distribution. E.g., General location model 

 

Methodological intrigue 
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Motivating example 



Analysis of five randomized controlled trials (N=5273): 
 

– Aim: To compare cardiac resynchronization therapy (CRT) versus CRT 
combined with implantable cardioverter defibrillator (CRT-D) for 
treating chronic heart failure 
 

– Outcomes: 

• Mortality  

• Functional: NYHA Class and 6-minute walk 

• Quality-of-life: Minnesota Living with Heart Failure questionnaire 
 

– Key research question: 
 

 Is the treatment effect different for males versus females? 
 

 

Case study 



Data completeness: complete cases: 2725 (52%) 

Case study 

Outcome Mortality 

(5% missing) 

NYHA class 

(15% missing) 

6-min walk 

(22% missing) 

 

Quality of Life 

(44% missing) 

 

Study 1 (N=490)     

Study 2 (N=555)     

Study 3 (N=1798)     

Study 4 (N=610)     

Study 5 (N=1820)     

: fully-observed;   
: partially missing   
: completely missing  



Case-study: analysis model 

Multilevel mixed model (2 binary, 2 continuous) 
 



Case-study: results 



Summary: 

 1. Unprincipled methods for handling missing data 
 

– Complete-case analysis with multiple outcomes is inefficient and leads 
to different inferences on mortality 

 

– Available-case analysis could be used, BUT 

• Inconsistent sample across outcomes 

• No correlation between outcomes accounted for 

• Still assumes MCAR 

 

2. Principled methods for handling the missing data 
 

 - Led to same inferences about the differential treatment effect 

 - CIs somewhat narrower for joint Bayesian model 
 

Case study: results 
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Some simulation results 



Covariates 

 
 

 

Outcomes        (multivariate distribution via copulas) 

 

Simulations: data generation 



Simulations: implementation 

1. Scenarios differed according to: 
 

 - No. of studies: 5 and 20 

 - Correlation between outcomes: 0.2 and 0.7 

 - % Missing data: 20% and 50% 

 - Missingness data mechanism  

 - sporadically missing (MAR on X, MAR on X and Y) 

 - systematically missing (MCAR) 
 

2. Implementation 

 - 1000 replications 

 - Parameter of interest: treatment effect on binary & continuous outcomes 

 - Performance metrics: bias, mean square error and joint CI coverage 



Simulations: results 1 

Scenario: 20 studies, corr between outcomes=0.7, % missing=0.5, MAR on X 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

Method 

Bias (%) Root MSE Joint 

coverage 

  beta.Y1 beta.Y2 beta.Y1 beta.Y2   

Full data 0.0 1.2 0.040 0.075 0.958 

Complete cases 10.1 34.9 0.121 0.128 0.503 

MI 1 0.1 7.4 0.054 0.103 0.944 

MI 2 0.1 6.1 0.049 0.100 0.947 

Joint Model 0.0 3.9 0.040 0.083 0.957 



Simulations: results 2 

Scenario: 5 studies, corr=0.7, % missing=0.5, MAR on X and Y 
 

  

 

 

 

 

 

 

 

 

 

 

 



Simulations: results 2 

Scenario: 5 studies, corr=0.7, % missing=0.5, MAR on X and Y 
 

  

 

 

 

 

 

 

 

 

 

 

 



 

 

• Similar results for scenarios with systematically missing data 

 

• Bayesian approach performed well across all scenarios 

 

• MI approach provided a decent alternative for most scenarios 

 
 

Discussion 1 
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• Improvements to current implementation of MI via FCS 

 

• Joint imputation model 

 

• MI and two-stage meta-analysis with very few studies 

 

 
 

Discussion 2 
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• No missing covariates 

 

• Fairly simple covariance structures 

 

 

Ongoing work 

 

• Assess the relative merits of the Bayesian approach under 
MNAR  
 

Limitations and further work 

Improving health worldwide www.lshtm.ac.uk 


