Handling missing data in metaanalysis of individual participant data with correlated mixed outcomes

Manuel Gomes

Centre for Statistical Methodology seminar

November 07, 2014

www.lshtm.ac.uk

VK MRC Early Career Felloswship in Economics of Health

◇ MDEpiNet Methodology Center at Harvard Medical
 School (FDA/Chickasaw Nation Industries contract
 HHSF223201110172C; FDA grant 1U01FD004493-01)
 ◇ Laura Hatfield

♦ Sharon-Lise Normand

- Individual Participant Data (IPD) meta-analysis
- Methodological challenges
- A full-Bayesian approach
- Motivating example
- Some simulation results
- Discussion

Year

Source: Riley et al 2010. Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ 340 (7745):4521-525.

Key advantages of IPD meta-analysis:

- Consistent inclusion/exclusion criteria
- Analyses/modelling can be standardised across studies
- Potential for including additional confounders
- Missing data can be addressed using all available data

IN PRACTICE:

- Subgroup analysis
- Inference based on multiple outcomes

IPD meta analysis

Challenges:

- Outcomes are partially or completely unobserved for some studies
- Multiplicity of outcomes
- Between-study heterogeneity
- Small number of studies

A multivariate Bayesian hierarchical model for handling the missing data in IPD meta-analysis

Full-Bayesian analysis

 Unknown parameters and missing values are estimated simultaneously, given the observed data.

$$f\left(\theta, Y^{mis}|Y^{obs}\right) = f(Y^{mis}|Y^{obs})f(\theta|Y^{mis},Y^{obs})$$

- Flexible framework for addressing between-study heterogeneity, and modelling multiple mixed outcomes
- Offers additional advantages in the context of evidence synthesis when prior evidence is available
- Requires that all variables explaining missingness are included in the analysis model

Bayesian hierarchical mixed model (Goldstein et al 2009)

 Y_{ij}^k - kth continuous outcome, k = 1, ..., K; Y_{ij}^l - lth binary outcome, l = 1, ..., L

$$Y_{ij}^{k} = \mu_{ij}^{k} + \varepsilon_{ij}^{k}$$

$$Z_{ij}^{l} = \mu_{ij}^{l} + \varepsilon_{ij}^{l} \qquad P(Y_{ij}^{l} = 1) = P(z_{ij}^{l} > 0)$$

$$\mu_{ij} = \beta_{0} + \beta_{1} t_{ij} + \beta_{2} X_{ij} + u_{j}$$

 $\varepsilon_{ij} \sim N(\mathbf{0}, \boldsymbol{\Omega}_{\varepsilon})$ where Ω_{ε} is the $k \times l$ level-1 covariance matrix with σ_l^2 constrained to 1

 $u_j \sim N(\mathbf{0}, \boldsymbol{\Omega}_{\boldsymbol{u}})_{\text{where } \Omega_u}$ is the $k \times l$ level-2 covariance matrix

A Bayesian approach

Diffuse priors (parameters constant across studies)

Level-2 covariance matrix

 $\tau_k \sim N(0, 0.001)I(0,)$ $\tau_l \sim N(0, 0.001)I(0,)$ $\phi \sim Unif(-1, 1)$

Inverse-Wishart prior could be used but uses a single parameter to control the precision of all elements of the matrix -> informative

Level-1 covariance matrix

 $\sigma_k \sim N(0, 0.001)I(0,)$ $\rho \sim Unif(-1, 1)$

Regression Coefficients

 $\beta \sim N(0, 1.0E - 6)$

Alternative methods

Alternative methods

Complete-case analysis (CCA)

- Patients with missing observations are dropped
- Assumes data are MCAR
- Typically leads to biased/imprecise results

Multiple Imputation (MI)

- Each missing value is replaced by a set of plausible values drawn from the posterior distribution of missing data given the observed
 - Imputation model is estimated separately from the analysis model (allows for the inclusion of 'auxiliary variables')
 - Recognises the uncertainty associated with the missing data and the estimation of the imputed values
 - Implementation is relative simple and available in a wide range of software

Multiple Imputation via fully-conditional specification

• Each incomplete variable is imputed iteratively. Let $y_1^{(t-1)}$ and $y_2^{(t-1)}$ be the initial values. For each iteration t:

$$\theta_{1}^{(t)} \sim p(\theta_{1}) p(y_{1}^{obs} | y_{2}^{(t-1)}, X, \theta_{1}) \qquad y_{1}^{mis(t)} \sim p(y_{1}^{mis} | y_{2}^{(t-1)}, X, \theta_{1}^{(t)})$$

$$\theta_{2}^{(t)} \sim p(\theta_{2}) p(y_{2}^{obs} | y_{1}^{(t-1)}, X, \theta_{2}) \qquad y_{2}^{mis(t)} \sim p(y_{2}^{mis} | y_{1}^{(t-1)}, X, \theta_{2}^{(t)})$$

Typically after 10 to 20 iterations, y_1^{mis} and y_2^{mis} are imputed from the posterior distribution as follows:

 \mathcal{Y}_{1}^{mis} is drawn from $p(y_{1}^{mis}|y_{2}^{*}, X, \theta_{1}^{*})$ \mathcal{Y}_{2}^{mis} is drawn from $p(y_{2}^{mis}|y_{1}^{*}, X, \theta_{2}^{*})$

Methodological intrigue

- In standard (non-hierarchical) settings, MI via FCS approximates the posterior distribution implied by the joint model (Gelman et al 2012)
- Previous work comparing JM with MI on correlated mixed outcomes found similar performance (He and Belin 2014)
- Unclear whether this holds in hierarchical settings:
 - Correlation structure is not explicitly partitioned between patient and studylevel components
 - Marginal distribution may provide information about the conditional distribution. E.g., General location model

Motivating example

Analysis of five randomized controlled trials (N=5273):

- Aim: To compare cardiac resynchronization therapy (CRT) versus CRT combined with implantable cardioverter defibrillator (CRT-D) for treating chronic heart failure
- Outcomes:
 - Mortality
 - Functional: NYHA Class and 6-minute walk
 - Quality-of-life: Minnesota Living with Heart Failure questionnaire

– Key research question:

Is the treatment effect different for males versus females?

Data completeness: complete cases: 2725 (52%)

Outcome	Mortality (5% missing)	NYHA class (15% missing)	6-min walk (22% missing)	Quality of Life (44% missing)
Study 1 (N=490)	√ x	√ x	√ x	√ x
Study 2 (N=555)	\checkmark	√ x	√ x	√ x
Study 3 (N=1798)	\checkmark	√ x	√ x	×
Study 4 (N=610)	\checkmark	√ x	√ x	√ x
Study 5 (N=1820)	√ x	√ x	√ x	×

- ✓: fully-observed;
- ✓ ×: partially missing
- *****: completely missing

Multilevel mixed model (2 binary, 2 continuous)

$$\begin{split} &Z_{ij}^{death} \sim N(\mu_{ij}^{1}, 1) \quad P(death_{ij} = 1) = P(z_{ij}^{death} > 0) \\ &Z_{ij}^{nyha} \sim N(\mu_{ij}^{2}, 1) \quad P(nyha_{ij} = 1) = P(z_{ij}^{nyha} > 0) \\ &walk_{ij} \sim N(\mu_{ij}^{3}, \sigma_{3}^{2}) \\ &qol_{ij} \sim N(\mu_{ij}^{4}, \sigma_{4}^{2}) \end{split}$$

 $\mu_{ij}^{k} = \beta_{0}^{k} + \beta_{1}^{k} treat_{ij} + \beta_{2}^{k} sex_{ij} + \beta_{3}^{k} treat_{ij} * sex_{ij} + u_{j}^{k}$ $u_{i}^{k} \sim N(0, \Omega_{u}) \qquad k = 1, \dots, 4$

Case-study: results

Treatment effect

Treatment effect

Case study: results

Summary:

- **1.** Unprincipled methods for handling missing data
- <u>Complete-case analysis</u> with multiple outcomes is inefficient and leads to different inferences on mortality
- <u>Available-case analysis</u> could be used, BUT
 - Inconsistent sample across outcomes
 - No correlation between outcomes accounted for
 - Still assumes MCAR

2. Principled methods for handling the missing data

- Led to same inferences about the differential treatment effect
- Cls somewhat narrower for joint Bayesian model

Some simulation results

 $+ u_{i}^{2}$

Covariates

$$X_{ij}^k \sim N(0, 1)$$
 $k = 1, ..., 4$

Outcomes (multivariate distribution via copulas)

$$\begin{split} Y_{ij}^{1} \sim N(\mu_{ij}, \sigma_{1}^{2}) & Y_{ij}^{2} \sim Bern(\pi_{ij}) \\ \mu_{ij} = 1 + 1T_{ij} + 0.5X_{1,ij} + 0.5X_{2,ij} + u_{j}^{1} \\ logit(\pi_{ij}) = -0.5 - 0.1T_{ij} + 0.2X_{3,ij} + 0.2X_{4,ij} \\ \begin{pmatrix} u_{j}^{1} \\ u_{j}^{2} \end{pmatrix} \sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0.1 \\ 1 \end{pmatrix}\right) \end{split}$$

Simulations: implementation

1. Scenarios differed according to:

- No. of studies: 5 and 20
- Correlation between outcomes: 0.2 and 0.7
- % Missing data: 20% and 50%
- Missingness data mechanism
 - sporadically missing (MAR on X, MAR on X and Y)
 - systematically missing (MCAR)

2. Implementation

- 1000 replications
- Parameter of interest: treatment effect on binary & continuous outcomes
- Performance metrics: bias, mean square error and joint CI coverage

Scenario: 20 studies, corr between outcomes=0.7, % missing=0.5, MAR on X

Method	Bias (%)		Root MSE		Joint coverage
	beta.Y1	beta.Y2	beta.Y1	beta.Y2	
Full data	0.0	1.2	0.040	0.075	0.958
Complete cases	10.1	34.9	0.121	0.128	0.503
MI 1	0.1	7.4	0.054	0.103	0.944
MI 2	0.1	6.1	0.049	0.100	0.947
Joint Model	0.0	3.9	0.040	0.083	0.957

Simulations: results 2

Scenario: 5 studies, corr=0.7, % missing=0.5, MAR on X and Y

Simulations: results 2

Discussion 1

- Similar results for scenarios with systematically missing data
- Bayesian approach performed well across all scenarios
- MI approach provided a decent alternative for most scenarios

Discussion 2

- Improvements to current implementation of MI via FCS
- Joint imputation model
- MI and two-stage meta-analysis with very few studies

Limitations and further work

- No missing covariates
- Fairly simple covariance structures

Ongoing work

 Assess the relative merits of the Bayesian approach under MNAR