SOCIAL DETERMINANTS AND HEALTHY AGING: LIFEPATH A H2O2O PROJECT

APPLICATION: A LIFE COURSE APPROACH TO EXPLORE THE BIO-LOGICAL EMBEDDING OF SOCIOECONOMIC POSITION

M. Chadeau-Hyam, P Vineis March 17, 2016

SOCIAL INEQUALITIES IN HEALTH

Educational inequalities in mortality in Europe (EPIC): 371,295 participants across 9 countries

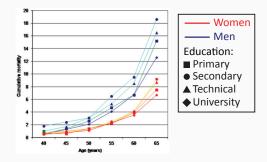
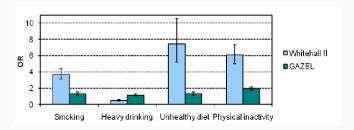


Figure: Cumulative mortality by age classes, education level and sex.

 \Rightarrow Higher mortality in men and decreasing mortality with education

Gallo et al., 2012


Psychosocial factors and social inequalities

	Education (in years)				Income (in dollars)			
Variable	<12	12-15	>15	p-value	<10K	10K-29K	30K+	p-value
Mean, marital stress scale	.29	.17	03	<.05	.31	.22	.06	.05
Mean, parental stress scale	.18	.10	05	<.05	.11	.15	.03	.12
Mean, financial stress scale	.61	.15	04	<.001	1.12	.35	24	<.001
Mean number of events past 3 years	1.09	.92	.87	<.05	1.11	1.02	.81	<.001
Mean number of lifetime events	.76	.53	.33	<.001	.61	.57	.44	<.001
Ever widowed (%)	2.5	1.3	.8	.16	5.3	1.0	.5	<.001
Ever divorced (%)	31.6	28.4	13.3	<.001	25.0	28.5	22.1	.01
Ever had child die (%)	11.3	5.0	1.4	<.001	6.1	5.6	4.2	.28
Ever assaulted (%)	31.1	18.8	17.1	<.001	25.0	22.0	17.0	.005

Figure: Stress - Life Event Variables by Socioeconomic Indicators

 \rightarrow Individuals with lower education levels and lower income experience more and stronger of stressfull events

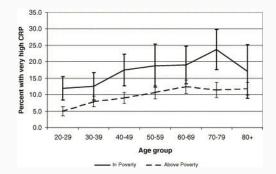
Main health behaviours and social inequalities: low vs. high (ref) occupation

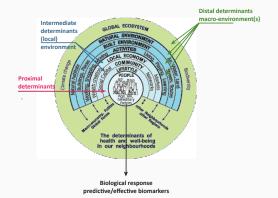
Figure: Occupational position and health behaviours in the British Whitehall II (N=9,771) and the French GAZEL (N=17,760 at first) cohort studies.

 \rightarrow Country-specific socioeconomic gradient in smoking, unhealthy diet, and physical inactivity

Stringhini et al., 2011

Socioeconomic position and inflammation: CRP in a US population-based sample, NHANES IV




Figure: Prevalence of very highCRP (>10 mg/L) CRP by age group and poverty status (N = 7634).

 \rightarrow Strikingly higher prevalence of (clinically indicative of infection) levels of CRP in deprived populations.

Alley et al., 2006

EXPLAINING SOCIAL INEQUALITIES IN HEALTH

Typology of the health determinants: 3 main classes

 ⇒ within each class socio-economic factors may play a role
⇒ need to investigate molecular markers of SEP experiences and their health consequences

Barton and Grant, 2006

A LIFE COURSE MODEL FOR HEALTHY AGEING

The Strachan-Sheikh Model: build-up and decline stages

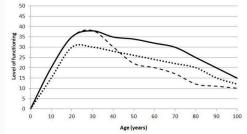


Figure: Life course representation of growth and decline of levels of functioning.

 \rightarrow Adverse socio-economic experience in early life can affect the mode of the build-up phase (dotted line)

 \rightarrow Adverse socio-economic experience later in life can affect the decline rate (dashed line)

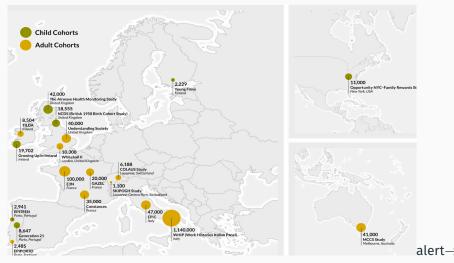
Strachan-Sheikh, 2004; Blane et al., 2013

• The 2 main stages:

- Build-up: from conception and early intra-uterine life to late adolescence or early twenties, characterised by rapid successions of developmentally and socially sensitive periods (potentiation)
- 2. **Decline**: starting in early adulthood, is a period of 'decline' from maximum attained health towards loss of function, overt disease and death
- Build-up stage strongly determines subsequent ageing trajectories as it influences the maximum attained level of health
- $\cdot\,$ SE exposures can affect the potentiation and the decline rate
- \cdot Under this model healthy ageing can be achieved by:
 - 1. Maximising the build-up phase: preventing adverse (effects of) early life exposures
 - 2. Slowing down the decline phase: preventing adverse (effects of) later exposures

\rightarrow Need to identify these SE exposures and understand their $$\ensuremath{\mbox{drivers}}$ and effects$

LIFEPATH PROJECT: HEALTHY AGEING FOR ALL


- Demonstrate that healthy ageing is strongly uneven in society, due to multiple environmental, behavioural and social circumstances that affect individuals' life trajectories
- 2. Improve the understanding of the mechanisms through which healthy ageing pathways diverge by social circumstances, by investigating **life course biological pathways using omic technologies**
- 3. Provide evidence on the reversibility of the poorer ageing trajectories experienced by individuals exposed to the strongest adversities, by using an experimental approach; and to analyse the health consequences of the current economic recession in Europe
- 4. Provide updated, relevant and innovative evidence for underpinning future policies

http://www.lifepathproject.eu/

- \cdot Europe-wide and national surveys (updated up to 2010)
- Longitudinal cohorts (across Europe) with deep phenotyping and repeat biological samples (total population >33,000)
- Other large cohorts with bio-samples (total population >202,000 and a large registry dataset with over a million individuals with very rich information on work trajectories and health)
- A randomized experiment on conditional cash transfer for poverty reduction in New York City

http://www.lifepathproject.eu/

DATA SOURCES

LIFEPATH covers numerous regions, age ranges, and exposures

http://www.lifepathproject.eu/

OMICs Markers already measured or whose measurement is funded/on-going

http://www.lifepathproject.eu/

Partners

- Imperial College London (Lead)
- · INSERM & Université Paul Sabatier, Toulouse
- · Lausanne University Hospital
- HuGeF, Torino

Four main Objectives

- 1. Mediation analysis of SES, risk factors and health outcomes
- 2. Defining a statistical suite to investigate omic signatures of SES factors
- 3. Mechanistic models integrating omic data from different platforms
- 4. Longitudinal models for healthy ageing

TASK 1: MEDIATION ANALYSES

Aim: to devise/develop and apply a novel analytical strategies to

- gain knowledge on structures governing SES risk factors health outcomes relationships
- identify relevant and stable (within and across populations) structures
- $\cdot\,$ identify potential mediators and effect modifiers

\rightarrow gain mechanistic/causal knowledge on which and how SES factors mediate their effect

 \rightarrow generation of prior knowledge to inform subsequent analyses

Methods

- \cdot sequentially-adjusted regression approaches
- \cdot structural equation models
- · Bayesian hierarchical models (including use of DAGs)
- \cdot causal inference models (including g-computation)

Main candidate approaches

- · Univariate approaches & multiple testing correction
- \cdot (Supervised) dimensionality reduction techniques
- Variable selection approaches (penalized regression and Bayesian alternatives)

LIFEPATH specific constraints:

- subtle and complex effect of SES factors
- heterogeneous sets of exposures (conventional risk factors and complex SES measures, partially redundant)
- \cdot possible joined (and non additive) effects of exposures
- generalisability: how findings replicate outside the social context under investigation (interaction)
 - \rightarrow Generalise methods to accommodate multiple and correlated exposures and incorporate structures/interactions

Aim: explore regulatory cascades triggered by SE exposures and affect health

- \cdot mechanistic and causal models are restricted to very few drivers
- profiling techniques don't incorporate structures
 - ightarrow combine both approaches

Ways forward:

• Use variable selection approaches to identify key nodes (as defined as scores of OMICs markers and/or SES and/or risk factors) and run reduced dimension models as in Task 1

\rightarrow interpretability and reliability of the 'nodes'?

• Two step procedure: sequential profiling techniques to order OMIC markers WRT their 'proximity' to exposure. Use networks to draw a typology within and across (ordered) classes of markers

\rightarrow how to integrate prior information in these models?

 $\cdot\,$ Generalise the BVS paradigm and identify the best causal graphes

TASK 4: LONGITUDINAL MODELS

Need to incorporate a longitudinal and dynamic component

- $\cdot\,$ SES measures are dynamic: calendar time and age related
- · Crucial role of SES trajectories
- · Existence of age-driven susceptibility
- Volatility of OMICS signals

ightarrow models will depend on available data

Some candidate approaches

- Estimate a a 'volatility map' (pooling profiles from different cohorts & using repeated samples)
- Cross sectional data: define composite scores and sequential adjustments on time ordered covariates; interaction models
- Longitudinal data: trajectory classification algorithms (warping models), explicit mechanistic modelling (multi-state models)

 \rightarrow how to integrate a causal component in a longitudinal setting?

2 PILOT STUDIES: PROTEOMICS AND TRANSCRIPTOMICS R. CASTAGNÉ^(1,2), M. KELLY-IRVING⁽²⁾, C. DELPIERRE⁽²⁾, P. VINEIS⁽¹⁾ & M. CHADEAU-HYAM⁽¹⁾; ⁽¹⁾IMPERIAL COLLEGE; ⁽²⁾ INSERM, TOULOUSE

DATA: ITALIAN COMPONENT OF THE EPIC STUDY

Biological measures

EpiGenomics

- Illumina Infinium Human Methylation 450 BeadChip
- 485, 512 Methylation sites
- \cdot 1,716 samples

Transcriptomics

- · Agilent 44k
- 29,662 probes
- · 268 samples

Proteins

- Luminex Multianalyte Profiling
- · 28 inflammatory-related proteins

Life course socioeconomic position (SEP)

Childhood SEP

- Father's occupation
- 2 classes: 'Manual' and 'Non-manual'

Young adulthood SEP

- · Participant's education
- 2 classes: 'High' (above the minimum legal education level) and 'Low'

Adulthood SEP

- Highest household occupation
- 2 classes: 'Manual' and 'Non-manual'

Model formulation, for individual *i*:

- Variable of interest: Xⁱ (SEP, 2 classes)
- Predictors: Yⁱ, Proteins, Gene expression or Methylation level
- Fixed effects: *FEⁱ*, age and gender, phase and centre, case-control status
- Random effect variables: u^{A^i} where A^i are nuisance variables (i.e. sample position on the array, ...)
- Full model

Methodology: likelihood ratio test

- 1. Run the model with and without the variable of interest (X^i)
- 2. Compare both models

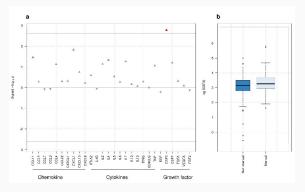
 \rightarrow for each biomarker we obtain a p-value testing the association between the proteins and the SES classes

• **Hypothesis:** consistent positive direction of the association between biomarkers and SEP

Definition

- 1. Get the denoised data to remove noise variation of different batches
- 2. Split each biomarker level into quartiles
- 3. Assign 0 for quartile 1 to 3
- 4. Assign 1 for quartile 4
- 5. Global score: Sum across biomarkers

Continuous alternative:


• First PC from a principal component analyses based on 'de-noised' biomarker levels

Life-course multivariate linear regression: sequential adjustment on time-ordered SEP-inidcators

- **Model A:** Age, gender, case-control status, phase and center and father job
- Model B-1: Model A + education
- Model B-2: Model A + highest household's occupation
- Model C: Model B-1 + highest household's occupation
- Model D: Model C + BMI + Smoking status + Alcohol

SENSITIVE PERIODS: CHILDHOOD SES

Father's occupational position; ref. 'non-manual'

Figure: (a) Signed 'Manhattan plot' for the 28 proteins. **(b)** Boxplot of log transformed CSF3 plasma levels per father occupational position group.

 \rightarrow General increased inflammation for lower paternal occupation and other SEP indicators \rightarrow Only CSF3 remains significant after multiple testing correction **Table:** Life course multiple regression analyses for plasma concentration of CSF3. Estimates are based on 230 participants with full SEP and lifestyle information.

		Model A		Model	B-1	Model B-2		Model C		Fully Adjusted Model	
(A) Plasma concentration of CSF3											
Variables	Levels	β (SE)	P-value	β (SE)	P-value	β (SE)	P-value	β (SE)	P-value	β (SE)	P-value
Father's occupational position	Manual	0.29 (0.09)	0.002	0.27 (0.10)	0.008	0.29 (0.10)	0.004	0.28 (0.10)	0.008	0.28 (0.10)	0.007
Participant's education	Low			0.03 (0.10)	0.733	-	-	0.04 (0.11)	0.742	0.02 (0.12)	0.868
Household's highest occupation	Manual					0.01 (0.10)	0.916	-0.01 (0.11)	0.957	-0.02 (0.11)	0.862
BMI										0.02 (0.01)	0.230
Smoking status	Former									-0.01 (0.12)	0.917
	Current									-0.01 (0.12)	0.608
Alcohol										0.001 (0.003)	0.644

 \rightarrow Adjusting on later life SEP indicators do not affect CSF3-father's occupation association

Table: Life course multiple regression analyses for father's occupational using the inflammatory score (B) and the first PC (C).

	Model A Model B-1 Model B-2		B-2	Model C		Fully Adjusted Model					
(B) Inflammatory score											
Variables	Levels	β (SE)	P-value	β (SE)	P-value	β (SE)	P-value	β (SE)	P-value	β (SE)	P-value
Father's occupational position	Manual	1.96 (0.89)	0.029	2.88 (0.97)	0.003	2.64 (0.93)	0.005	3.08 (0.98)	0.002	2.93 (1.00)	0.004
Participant's education	Low			-2.22 (0.98)	0.024	-	-	-1.54 (1.08)	0.156	-1.5 (1.10)	0.174
Household's highest occupation	Manual					-2.22 (0.97)	0.023	-1.56 (1.07)	0.149	-1.49 (1.09)	0.174
BMI										-0.07 (0.13)	0.617
Smoking status	Former									-0.62 (1.16)	0.594
	Current									-0.57 (1.16)	0.621
Alcohol										-0.02 (0.03)	0.433
(C) Principal component 1											
Variables	Levels	β (SE)	P-value	β (SE)	P-value	β (SE)	P-value	β (SE)	P-value	β (SE)	P-value
Father's occupational position	Manual	-0.60 (0.45)	0.182	-1.05 (0.49)	0.031	-0.84 (0.47)	0.074	-1.10 (0.49)	0.026	-1.06 (0.50)	0.034
Participant's education	Low			1.10 (0.49)	0.025	-	-	0.93 (0.54)	0.088	0.95 (0.55)	0.086
Household's highest occupation	Manual					0.79 (0.49)	0.104	0.39 (0.54)	0.466	0.40 (0.55)	0.462
BMI										-0.01 (0.07)	0.856
Smoking status	Former									0.27 (0.58)	0.639
	Current									0.48 (0.58)	0.411
Alcohol										0.01 (0.01)	0.637

 \rightarrow The association with early life SEP is detected by the score

 \rightarrow For PC1 the association is significant upon adjustment on father's occupation

 \rightarrow Results are robust to behavioural factors

 \rightarrow For both scores, association with participant's education in model B-1 only

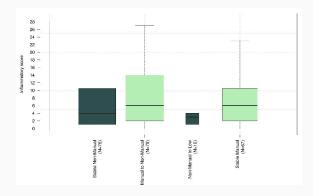

\Rightarrow role of SEP trajectories?

Table: Multiple regression analyses of social mobility through the interaction term between father's occupation and participant highest household position. Results are presented for the inflammatory score **(A)** and the first PC **(B)**.

Social mobility								
(A) Inflammatory score								
Variables	β	SE	P-value					
Intercept (stable Non-manual)	8.40	3.18	0.009					
Manual to Non-manual	2.38	1.04	0.023					
Non-Manual to Manual	-3.36	2.16	0.122					
stable Manual	0.42	1.11	0.705					
(B) Principal component 1								
Variables	β	SE	P-value					
Intercept (stable Non-manual)	-1.89	1.59	0.236					
Manual to Non-manual	-0.72	0.52	0.170					
Non-Manual to Manual	1.33	1.08	0.222					
stable Manual	-0.05	0.56	0.933					

 \rightarrow The score reveals differential inflammatory status in 'stable Non Manual' and 'Non-Manual to Manual' participants \rightarrow No association found using PC1

Social mobility

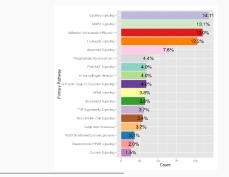


Figure: Box-and-whisker plot summarising the distribution of the inflammatory score across the four categories of the social mobility index.

\rightarrow Stronger effect of the upward social mobility

Choosing genes

- · Pathways were build using Ingenuity Pathways Analysis
- · Genes chosen were assigned to one of the functionnal pathways:
- \cdot 1027 genes in the paper, 845 genes present in our dataset

Loza et al., 2007

			Inflar	nmatory tra	nscriptome scor	9			
	Mode	l A	Model	В	Model	С	Model D		
	β (se)	pval	β (se)	pval	β (se)	pval	β (se)	pva	
father.job	21.81 (10.32)	3.59E-02	26.25 (11.26)	2.07E-02	25.41 (11.39)	2.68E-02	25.37 (11.46)	2.79E-02	
education			-11.21 (11.35)	3.24E-01	-14.09 (12.61)	2.65E-01	-9.81 (12.67)	4.40E-01	
hho					6.59 (12.49)	5.99E-01	9.14 (12.5)	4.65E-01	
bmi							-3.23 (1.53)	3.62E-02	
former							19.23 (13.44)	1.54E-01	
current							10.19 (13.33)	4-45E-01	
alcohol							-0.06 (0.34)	8.68E-01	
			Infla	mmatory tra	anscriptome PC 1				
	Mode	l A	Model	В	Model	С	Model	D	
	β (se)	pval	β (se)	pval	β (se)	pval	β (se)	pva	
father.job	-4.03 (2.14)	6.11E-02	-4.36 (2.34)	6.34E-02	-4.12 (2.36)	8.28E-02	-3.93 (2.39)	1.02E-01	
education			0.85 (2.35)	7.20E-01	1.68 (2.62)	5.22E-01	1.42 (2.64)	5.91E-01	
hho					-1.9 (2.59)	4.64E-01	-1.98 (2.61)	4-49E-01	
bmi							0.14 (0.32)	6.57E-0:	
former							-0.61 (2.8)	8.29E-0:	
current							4.51 (2.78)	1.06E-0:	
alcohol							0.04 (0.07)	5.35E-0:	

 \rightarrow Inflammatory transcriptome global score and PC1 are associated with father occupational position

 \rightarrow Association remains significant after adjusting for bmi, smoking status and alcohol

 \rightarrow No association with education after adjusting on early life sep

 \Rightarrow maybe consider alternative scores?

Can we replicate the association between the father's occupationnal position and the inflammatory transcriptome score?

Dataset GSE15180

- **Overall design:** Samples from 30 adults with low early-life SES and 30 adults with high early-life SES
- **Summary:** This study conducted transcriptional profiling of PBMC in healthy adults who were low vs. high in early-life SES to explore the long-lasting genomic effects of early experience
- Platform: Illumina HumanRef-8 v3.0 expression beadchip

One SES (high/low early SES) and no confounders

	β	β (se)	P-val
Global score	24.50	10.21	1.97E-02
PC1	-2.80	2.86	3.32E-01

 \rightarrow The association between the inflammatory transcriptome global score and early life SEP is replicated in the dataset GSE15180

Promising pilot results

- Inflammation results: SEP-inflammation associations were detected and involved SEP-trajectories
- Power: these associations were detected with limited size
- **Integration:** using prior knowledge we were able to integrate OMICs data from different platforms and to replicate results

Next steps

- · Methodological developments: tested on existing data
- Generalisation of the approach to other OMICS: methylation (on-going) / adductomics
- · OMICS integration: insight into cross-omics effect mediation
- **Harmonisation:** considerable effort is on-going to ensure data comparability across LIFEPATH study