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Definitions
Oxford English Dictionary: Statistics. An observation
whose value lies outside the set of values considered likely
according to some hypothesis (usually one based on other
observations); an isolated point
Grubbs (1950): An outlying observation, or outlier, is one
that appears to deviate markedly from other members of
the sample in which it occurs
Hawkins (1980): An observation that deviates so much
from other observations as to arouse suspicion that it was
generated by a different mechanism
Bayarri & Morales (2003): A common approach consists in
assuming that the (possible) outliers are generated by
contaminating models different from the one generating the
rest of the data
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Defining outliers

Everybody knows what it is, but nobody can define it

St Augustine of Hippo, 401AD, (on Time)
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Outliers

Detection and handling (outlying, atypical, spurious)
observations is an important part of any statistical analysis
These observations may simply refer to observational
noise or a data processing error – spurious data
Or they may be a special part of the population, and should
be treated differently to most of the observations –
outlying data
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Outliers

Including outliers in the analyses might lead to model
misspecification, biased estimates... and incorrect results
What do we do with outlying observations?
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Treatment of outliers - Barnett & Lewis (1994)
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Treatment of outliers - Barnett & Lewis (1994)

Random outliers might be due to
inherent variability or,
unwittingly, to measurement
errors
Tests of discordancy might be
based on assumed initial model
Outliers might be:

Incoporated in revised model
Identified for a separate study
of origin and form
Rejected, if the initial model is
inviolable
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Outlier detection methods

1 Methods for dependent / independent observations
2 Parametric / distribution–free methods
3 Univariate / multivariate methods
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Outlier detection methods - dependent
observations

Dependent: closely related to Statistical Process Control
(SPC) methods
There are nine (Nelson’s) criteria to characterise special
cases
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Outlier detection methods - infectious
disease surveillance

package(surveillance)

implements the methods of
Farrington et al (JRSS–A, 1996)
A statistical algorithm for the
early detection of outbreaks of
infectious disease
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EDA methods

Exploratory Data Analysis (EDA) – Tukey’s (1977):
Data samples contain outliers, and the larger the sample
size the higher the probability of getting at least one outlier
To detect outliers, use empirical quartiles, which are
insensitive to large deviations, and define the central part of
the data
Completely data–driven
Problem: quantiles may not be uniquely defined for discrete
data
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Non–parametric methods: Boxplots

Defined by Tukey (Exploratory Data Analysis, 1977)
Observation Y is an outlier if
Box is defined by hinges [Q1,Q3], with Q2 in the middle
Any observation, Y , such that

Y < Q1− k × IQR or Y > Q3 + k × IQR
where IQR = Q3−Q1
is considered as an outlier and marked on the plot
Whiskers go from the limits of the box to the most distant
points that are no outliers
k = 1.5 flags ”‘out”’ values; k = 3 flags ”‘far out”’
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Non–parametric methods: Boxplots – why
1.5?

Paul Velleman, a student of John Tukey, asked ”‘Why
1.5?”’, Tukey answered, ”‘Because 1 is too small and 2 is
too large.”’
This factor is appropriate for identifying outliers in
symmetric, continuous distributions
The information given about the tails – outliers – is often
not reliable for skewed data
Typically the upper whisker is too short resulting in too
many outliers
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Non–parametric methods: Boxplots – why
1.5?

Tukey’s rules are not sample–size dependent and the
probability of labelling outliers when none exists changes
with n
Hoaglin et al (JASA, 1986) Performance of some resistant
rules for outlier labeling found k = 1.5 too liberal and k = 3
too conservative for moderate n from Y ∼ N
Several modifications have been suggested... but the 1.5
rule is very widely used
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Labelling outliers
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Labelling outliers
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Labelling outliers
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Non–parametric methods: Boxplots – which
quantile definition?

Boxplots provide a simple way to label outliers
There are many ways to define sample quantiles, cf
Hyndman & Fan, (TAS 1996) Sample quantiles in statistical
packages
For discrete r.v. the pdf F is a right–continuous step
function, with the height of the step being Pr [Y = y ]

In the extremes, and for finer partitions the quantiles may
not be unique
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Non–parametric methods: adjusted boxplots

For right–skewed distributions the boxplot labels too many
large outliers and too few small outliers
A simple modification, based on a robust estimate of
skewness is in Hubert and Vandervieren (Comp Stats Data
An 2008) An adjusted boxplot for skewed distributions
It’s available in package (robustbase)
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Non–parametric methods: adjusted boxplots
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Non–parametric methods: adjusted boxplots

This adjusted boxplot doesn’t
correct for kurtosis, and it may
be more liberal than the boxplot
An example is from the
four–parameter distribution
proposed by Jones & Pewsey
(Biometrika (2009) Sinh-arcsinh
distributions
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Non–parametric methods: adjusted boxplots

The SHASH model describes well kurtotic and asymmetric
datasets
package (gamlss) Rigby & Stasinoupoulos, JRSS-C
(2005) fits this and other 3– and 4–parameter densities
For example the spherical equivalent (dioptres) in adults
In this example boxplot identifies 261 outliers vs 285 from
adjusted boxplot
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Spherical equivalent example
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Boxplots and discrete data

Often, for zero–inflated discrete
data neither boxplot work
This is a not particularly
overdispersed dataset but
Q1 = Q2 = Q3 = 0
so no outliers can be identified
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Boxplots and discrete data

Often, for overdispersed discrete data
neither boxplot work – they’re arguably
too liberal or too conservative in outlier
labelling
This is a zero–inflated (57%) and very
overdispersed (OD=85) count dataset
The data come from Williams, (J of
Ecology (1944), Some applications of
the logarithmic series and diversity
index to ecological problems)
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Bivariate outliers

Joint outliers might not be outliers in the
marginals
Outliers tend to appear at the extremes
of the data space; typical observations
occur at its centre – if there is one!
Convex hull–based: data depth, e.g.
Rousseeuw & Ruts, Comp Stats & Data
Analysis (1996) Computing Depth
Contours of Bivariate Point Clouds

28 / 54



Bivariate extensions of boxplots - replot and
quelplot

Both proposed by Goldberg & Iglewicz, Technometrics
(1992) Bivariate extensions of the boxplot
The relplot is based on robustly fitting a bivariate Gaussian
pdf, and drawing 50% (box) and 99% (whiskers)
confidence ellipses
The quelplot adds two degrees of asymmetry, accounting
for residuals on both the major and minor axes of the
ellipse
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Bivariate boxplots – replot and quelplot

Relplot = Robust elliptical plot
Note the assumption of bivariate
normality
The estimate of the
variance–covariance matrix is
robust vs outliers
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Bivariate boxplots – replot and quelplot

quelplot = quarterly robust elliptical plot
Accidents in 621 children - two periods, (4,7), (8,11) years
of age

0 1 2 3 4 5 6 7
0 101 76 35 15 7 3 3 0
1 67 61 32 14 12 4 1 1
2 24 36 22 15 6 1 2 1
3 10 19 10 5 2 4 0 2
4 1 7 3 4 2 0 0 0
5 2 1 4 2 0 0 0 0
6 1 1 1 1 0 0 0 0
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Example: relplot of chidren’s accidents in
two periods

Data from Mellinger et al JASA (1965), A mathematical
model with applications to a study of accident
repeatedness among children
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Model–based methods

Model–based outliers, e.g. Ronan M Conroy (allstat,
15.07.1999): I’m not an outlier; I just haven’t found my
distribution yet
Significance tests depend on pivotal quantities and optimal
criteria
Tests are available for continuous distributions, mostly for
the Gaussian
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Model–based methods

There are very few model–based outlier tests for discrete
r.v.’s
The classic procedure (Hawkins, 1980), is:

Find a sufficient statistic T for the parameters
Find a suitable outlier test statistic h (Y ,T ) whose
distribution is independent of the unknown parameters

This pivotal quantity, h exists for only very few discrete
distributions
There are procedures based on the exact distribution of
the n–th order statistic but this assumes knowing the
parameters
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Long–tailed discrete distributions

Parameter–mix distributions
Usually constucted by assuming a continuous pdf for the
parameter of a Poisson distribution
This can be seen as an indicator of variable frailty, or as a
random effect
The best known model is: Negative Binomial = (Poisson,
Gamma) mix
Two related models:

Holla = (Poisson, Inverse Gaussian) mix
Sichel = (Poisson, Generalised Inverse Gaussian) mix
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Surprise

Oxford English Dictionary: an unexpected occurrence or event;
anything un-expected or astonishing

Applied statisticians evaluate how surprising the observed
value of a random variable is with respect to a probability model

A p-value may be defined as the probability of observing values
of the test statistic at least as extreme as the observed one
assuming the null model is correct

No explicit formulation of alternative models is required so this
measure has appealed to statisticians over the years.
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Surprise

Good Some Logic and History of Hypothesis Testing (1981):
The evolutionary value of surprise is that it causes us to check
our assumptions. Hence if an experiment gives rise to a
surprising result given some null hypothesis H it might cause
us to wonder whether H is true even in the absence of a vague
alternative toH. It is therefore natural to consider whether a
statistical test of H might be to depend upon some index of
surprise
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Surprise

A surprise measure other than the p-value was first proposed
by Weaver, Probability, Rarity, Interest and Surprise (1948),
The Scientific Monthly

Generalized by Good, The Surprise Index for the Multivariate
Normal Distribution (1956) Ann of Math Stats

Compares the expected value of the random variable whose
possible values are the probabilities of the observations and the
individual probabilities of such observation

Very few applications: expressions for the surprise index
available only for very few pdf’s

Well–suited for analysing discrete long–tailed distributions
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Surprise Index

Weaver’s surprise index: an empirical measure of how
unexpected an observed value of a random variable is

Low probability implies rarity but not necessarily surprise; a
surprising event is always rare

E.g. winning the lottery is certainly a rare event but it’s not
surprising that somebody wins the lottery as each combination
has an equal probability of occurring

E.g. tossing a coin: Ω = {head, tail, edge} with probabilities{1−ε
2 , 1−ε

2 , ε
}

, where ε is the probability a coin lands on its edge
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Surprise Index

Let a discrete r.v. V take values in Ω of {V1,V2, . . .} with
probabilities {p1,p2, . . .}

The expected value of these random quantities is
E(V ) = p1 V1 + p2 V2 + . . .

This assumes we know the true model H defining the pi ’s

The SI for each Vi , λ(i) is:

λi =
E (p |H )

pi
=

1
pi

∑
j=1

p2
j
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Surprise Index

For the lottery example λ = 1 for all combinations of lottery
numbers, as each combination has an equal probability of
occurring

For the coin tossing experiment, λ ∼ 1 for head or tail, and
λ = 3ε

2 + 1
2ε − 1 for the edge event

42 / 54



Surprise Index – Weaver’s interpretation

Weaver suggested the following categories to determine if a
value of SI may be considered as large enough to correspond
to a surprising event

We follow Weaver’s conventional scale and consider an
observation occurring with probability pi as an outlier if
λi ≥ 1000

<5 Not surprising
10 Begins to be surprising

103 Definitely surprising
106 Very surprising

1012 Miracle!
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Surprise Index for discrete pdf’s

The only analytical expressions published for Surprise Indices
λ are those of the Binomial, and Poisson distributions, obtained
by Redheffer, A note on the surprise index, (1951) Ann Math
Stats

Good, The Surprise Index for the Multivariate Normal
Distribution, (1956) Ann Math Stats calculated λ for the Normal
and multivariate Normal distributions
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Examples of SI’s

Poisson (µ) : λi =
I0(2µ) i!

eµ µi

Negative Binomial (r ,p) :

λi = (1− p)−i pr
2F1

[
r , r ,1, (p − 1)2

] ( r + i − 1
r − 1

)−1

General zero–inflated with ω as the mixture parameter :

λZI,i =
(1− ω)2 λi + 2 p0

(
ω − ω2)+ ω

[ω + (1− ω) p0 ] U(i)
0 + [(1− ω) pi ]

(
1− U(i)

0

)
where U(i)

0 is an indicator function being 1 for i = 0 and 0
otherwise
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Surprise Index in practice

The hypothesised data–generating mechanisms imply pdf’s to
be fitted

Models fitted using maximum likelihood

There are numerical issues with some densities

Good initial estimates are often available via rapid estimation
methods, e.g. matching moments or pgf values

Model selection is based on BIC = −2`+ d ln(n) where ` is the
maximized log–likelihood, d is the number of parameters in the
model and n is the number of independent observations

46 / 54



Example: Stillborns in litters of NZ white
rabbits; Morgan et al Negative Score Test,
(2007) Am Statsn

Distribution No. of Stillbirths BIC
0 1 2 3 4 5 6 7 8 9 10 11

Observed 314 48 20 7 5 2 2 1 2 0 0 1 —
Poisson 254 117 27 4 · · · · · · · · 887.7
ZIP 314 33 28 16 7 2 1 · · · · · 726.4
NB 314 46 19 10 5 3 2 1 1 · · · 686.3
ZINB 314 46 19 10 5 3 2 1 1 · · · 692.3
Sichel 314 49 18 9 5 3 2 1 1 · · · 691.9
ZI Sichel 314 48 18 9 5 3 2 1 1 · · · 697.9
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Surprise Index: NZ white rabbits litters

Surprise Indices for Rabbits

No. of stillborns in litter
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Example: Cysts in embryonic mice kidneys;
Chan et al, (2009) Am J Physiol

A group of 111 kidneys subjected to a particular steroid (n=111)

High proportion of zeroes (58.6%) and OD = 5.7

Dist. No. of Cysts in kidneys BIC
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Obs. 65 14 10 6 4 2 2 2 1 1 1 2 · · · · · · · 1 —
Poisson 24 37 28 15 6 2 · · · · · · · · · · · · · · 564.1
ZIP 65 5 8 10 9 7 4 2 1 · · · · · · · · · · · 418.8
NB 65 16 9 6 4 3 2 2 1 1 1 1 · · · · · · · · 359.0
ZINB 65 15 9 6 4 3 2 2 1 1 1 1 · · · · · · · · 414.1
Sich 64 16 9 6 4 3 2 2 1 1 1 1 · · · · · · · · 364.0
ZI Sich 65 14 9 6 4 3 2 2 1 1 1 1 · · · · · · · · 368.1
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Surprise Index: Cysts in embryonic mice
kidneys

No. of cysts in kidneys
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Example: Accidents in Belgian drivers 1978;
Nikololoupoulos and Karlis (2008) Comp
Stats Data An

Distribution No. of Claims BIC
0 1 2 3 4 5 6 7

Observed 7840 1317 239 42 14 4 4 1 —
Poisson 7635 1637 175 13 1 0 0 0 10990.7
ZIP 7840 1274 296 46 5 0 0 0 10769.5
NB 7847 1288 257 54 12 3 1 0 10714.4
Holla 7844 1306 238 53 14 4 1 0 10705.3
Sichel 7842 1310 236 53 14 4 1 0 10713.7
Waring 7848 1281 253 58 15 4 1 0 10707.7

For this data set all models gave SI ≥ 1000 for Y ≥ 7

Characterise this driver as an outlier
51 / 54



Example: lice in heads of prisoners

Distribution BIC
Poisson 29179.8
ZIP 17951.9
NB 4663.6
ZINB 4715.2
Holla 4766.4
ZIHolla 4822.1
Sichel 4661.3
ZISichel 4710.3

For this dataset the Sichel model gave SI ≥ 1000 for Y ≥ 120

Not too far from the adjusted boxplot result
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Conclusion

Determining ouliers in discrete datasets ... is not easy!

Extension of the SI to bivariate discrete distributions is
possible... but not easy!
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