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Plan
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I Multi-state survival models
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I Simulation approach
I Some extensions
I Clinically useful measures of absolute risk
I New Stata multistate package

I Current and future research
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Background

I In survival analysis, we often concentrate on the time to a
single event of interest

I In practice, there are many clinical examples of where a
patient may experience a variety of intermediate events

I Cancer
I Cardiovascular disease

I This can create complex disease pathways
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Figure: An example from stable coronary disease (Asaria et al.,
2016)

Michael J. Crowther LSHTM 31st March 2017 4 / 47



Background Primary breast cancer Multi-state models Transition probabilities Extensions Summary References

I We want to investigate covariate effects for each specific
transition between two states

I With the drive towards personalised medicine, and
expanded availability of registry-based data sources,
including data-linkage, there are substantial opportunities
to gain greater understanding of disease processes, and
how they change over time
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Primary breast cancer (Sauerbrei et al., 2007)

I To illustrate, I use data from 2,982 patients with primary
breast cancer, where we have information on the time to
relapse and the time to death.

I All patients begin in the initial ‘healthy’ state, which is
defined as the time of primary surgery, and can then
move to a relapse state, or a dead state, and can also die
after relapse.

I Covariates of interest include; age at primary surgery,
tumour size (three classes; ≤ 20mm, 20-50mm, >
50mm), number of positive nodes, progesterone level
(fmol/l), and whether patients were on hormonal therapy
(binary, yes/no). In all analyses we use a transformation
of progesterone level (log(pgr + 1)).
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State 1: Post-surgery 

State 2: Relapse 

State 3: Dead 

Transition 1 
h1(t) 

Transition 3 
h3(t) 

Transition 2 
h2(t) 

Figure: Illness-death model for primary breast cancer example.
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Markov multi-state models

Consider a random process {Y (t), t ≥ 0} which takes the
values in the finite state space S = {1, . . . , S}. We define the
history of the process until time s, to be
Hs = {Y (u); 0 ≤ u ≤ s}. The transition probability can then
be defined as,

P(Y (t) = b|Y (s) = a,Hs−)

where a, b ∈ S. This is the probability of being in state b at
time t, given that it was in state a at time s and conditional
on the past trajectory until time s.
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Markov multi-state models

A Markov multi-state model makes the following assumption,

P(Y (t) = b|Y (s) = a,Hs−) = P(Y (t) = b|Y (s) = a)

which implies that the future behaviour of the process is only
dependent on the present.
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Markov multi-state models

The transition intensity is then defined as,

hab(t) = lim
δt→0

P(Y (t + δt) = b|Y (t) = a)

δt

Or, for the kth transition from state ak to state bk , we have

hk(t) = lim
δt→0

P(Y (t + δt) = bk |Y (t) = ak)

δt

which represents the instantaneous risk of moving from state
ak to state bk . Our collection of transitions intensities governs
the multi-state model.
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Estimating a multi-state models

I There are a variety of challenges in estimating transition
probabilities in multi-state models, within both
non-/semi-parametric and parametric frameworks (Putter
et al., 2007), which I’m not going to go into today

I Essentially, a multi-state model can be specified by a
combination of transition-specific survival models

I The most convenient way to do this is through the
stacked data notation, where each patient has a row of
data for each transition that they are at risk for, using
start and stop notation (standard delayed entry setup)
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Consider the breast cancer dataset, with recurrence-free and
overall survival

. list pid rf rfi os osi if pid==1 | pid==1371, sepby(pid) noobs

pid rf rfi os osi

1 59.1 0 59.1 alive

1371 16.6 1 24.3 deceased
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We can restructure using msset
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. list pid rf rfi os osi if pid==1 | pid==1371, sepby(pid) noobs

pid rf rfi os osi

1 59.1 0 59.1 alive

1371 16.6 1 24.3 deceased

. msset, id(pid) states(rfi osi) times(rf os) covariates(age)

variables age_trans1 to age_trans3 created

. matrix tmat = r(transmatrix)

. list pid _start _stop _from _to _status _trans if pid==1 | pid==1371

pid _start _stop _from _to _status _trans

1 0 59.104721 1 2 0 1
1 0 59.104721 1 3 0 2

1371 0 16.558521 1 2 1 1
1371 0 16.558521 1 3 0 2
1371 16.558521 24.344969 2 3 1 3

. stset _stop, enter(_start) failure(_status==1) scale(12)
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I Now our data is restructured and declared as survival
data, we can use any standard survival model available
within Stata

I Proportional baselines across transitions
I Stratified baselines
I Shared or separate covariate effects across transitions

I This is all easy to do in Stata; however, calculating
transition probabilities (what we are generally most
interested in!) is not so easy

Michael J. Crowther LSHTM 31st March 2017 16 / 47



Background Primary breast cancer Multi-state models Transition probabilities Extensions Summary References

Calculating transition probabilities

P(Y (t) = b|Y (s) = a)

There are a variety of approaches

I Exponential distribution is convenient (Jackson, 2011)

I Numerical integration (Hsieh et al., 2002; Hinchliffe
et al., 2013)

I Ordinary differential equations (Titman, 2011)

I Simulation (Iacobelli and Carstensen, 2013; Touraine
et al., 2013; Jackson, 2016)
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Simulation

I Given our estimated transition intensities, we simulate n
patients through the transition matrix

I At specified time points, we simply count how many
people are in each state, and divide by the total to get
our transition probabilities

I To get confidence intervals, we draw from a multivariate
normal distribution, with mean vector the estimated
coefficients from the intensity models, and associated
variance-covariance matrix, and repeated M times
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Simulating survival times
Under a general hazard model

h(t) = h0(t) exp(X (t)β(t))

H(t) =

∫ t

0

h(u) du, S(t) = exp[−H(t)]

F (t) = 1− exp[−H(t)]

U = exp[−H(t)] ∼ U(0, 1)

Solve for t... Under a standard parametric PH model,

T = H−1
0 [− log(U) exp(−Xβ)]
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Simulation methods (Crowther and Lambert, 2013)

Does H0(t) have a 
closed form 
expression?

Can you solve for T
analytically?

Scenario 1
Apply inversion 

method

Scenario 2
Use iterative root 

finding to solve for 
simulated time, T

Scenario 3
Numerically integrate 
to obtain H0(t), within 
iterative root finding 

to solve for T

Yes Yes

No No
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Simulation methods

I Standard parametric models (Weibull, Gompertz, etc.) -
closed form H(t) and can invert -> extremely efficient

I Royston-Parmar model - closed form H(t) but can’t
invert -> Brent’s univariate root finder

I Splines on the log hazard scale - intractable H(t) and
can’t invert -> numerical integration and root finding

The last two are not as computationally intensive as you would
expect...
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Computation time in Stata with predictms

I Predicting transition probabilities at 20 evenly spaced
points in time across follow-up

I Starting in state 1 at time 0

I Times are in seconds

I Tolerance of <1E-08

n Weibulls Royston-Parmar (df=1,5,5) Log-hazard splines (df=1,5,5)

10,000 0.05 0.31 3.23
100,000 0.30 2.60 32.10

1,000,000 2.50 29.70 302.04
10,000,000 22.35 300.46 3010.30

Baseline only models fit to ebmt3 data
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Comparison with simLexis

I Predicting transition probabilities at 20 evenly spaced
points in time across follow-up

I Starting in state 1 at time 0

I Times are in seconds

I Tolerance of <1E-08

I Poisson - 20 splits in first 2 years, then yearly

Stata R
n Log-hazard splines (df=1,5,5) Poisson/splines (df=1,5,5)

10,000 3.23 12.97
100,000 32.10 176.50

1,000,000 302.04 Memory error
10,000,000 3010.30 Dream on...

Baseline only models fit to ebmt3 data
Michael J. Crowther LSHTM 31st March 2017 23 / 47
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Comparison with flexsurv

I Predicting transition probabilities at 20 evenly spaced
points in time across follow-up

I Starting in state 1 at time 0, and starting in state 2 at
time 0

I Times are in seconds

n Weibull RP (df=5)
Stata R Stata R

10,000 0.08 0.61 2.03 ≈ 3600
100,000 0.38 6.79 5.34 ...

1,000,000 3.88 59.73 56.36 ...
10,000,000 38.71 Crashes 570.4 ...

Baseline only models fit to bosms3 data
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Extending multi-state models

I What I’ve described so far assumes the same underlying
distribution for every transition

I Consider a set of available covariates X . We therefore
define, for the kth transition, the hazard function at time
t is,

hk(t) = h0k(t) exp(Xkβk)

where h0k(t) is the baseline hazard function for the
ak → bk transition, which can take any parametric form
such that h0k(t) > 0. To maintain flexibility, we have a
vector of patient-level covariates included in the ak → bk
transition, Xk , where Xk ∈ X .
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Proportional baseline, transition specific age effect

. streg age_trans1 age_trans2 age_trans3 _trans2 _trans3, dist(weibull)

Weibull regression -- log relative-hazard form

No. of subjects = 7,482 Number of obs = 7,482
No. of failures = 2,790
Time at risk = 38474.53852

LR chi2(5) = 3057.11
Log likelihood = -5547.7893 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age_trans1 .9977633 .0020646 -1.08 0.279 .993725 1.001818
age_trans2 1.127599 .0084241 16.07 0.000 1.111208 1.144231
age_trans3 1.007975 .0023694 3.38 0.001 1.003342 1.01263

_trans2 .0000569 .000031 -17.95 0.000 .0000196 .0001653
_trans3 1.85405 .325532 3.52 0.000 1.314221 2.615619

_cons .1236137 .0149401 -17.30 0.000 .0975415 .1566547

/ln_p -.1156762 .0196771 -5.88 0.000 -.1542426 -.0771098

p .8907636 .0175276 .8570641 .9257882
1/p 1.122632 .0220901 1.080161 1.166774
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predictms
. predictms, transmat(tmat) at(age 50)

graph
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Figure: Predicted transition probabilities.
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Extending multi-state models

. streg age_trans1 age_trans2 age_trans3 _trans2 _trans3 ,
> dist(weibull) anc(_trans2 _trans3)

// Is equivalent to...

. streg age if _trans==1, dist(weibull)

. est store m1

. streg age if _trans==2, dist(weibull)

. est store m2

. streg age if _trans==3, dist(weibull)

. est store m3

//Predict transition probabilities

. predictms, transmat(tmat) models(m1 m2 m3) at(age 50)

Separate models...we can now use different distributions
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Building our model

Returning to the breast cancer dataset

I Choose the best fitting parametric survival model, using
AIC and BIC

I We find that the best fitting model for transitions 1 and 3
is the Royston-Parmar model with 3 degrees of freedom,
and the Weibull model for transition 2.

I Adjust for important covariates; age, tumour size, number
of nodes, progesterone level

I Check proportional hazards assumption
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Figure: Best fitting parametric cumulative hazard curves overlaid
on the Nelson-Aalen estimate for each transition.
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Final model

I Transition 1: Royston-Parmar baseline with df=3, age,
tumour size, number of positive nodes, hormonal therapy.
Non-PH in tumour size (both levels) and progesterone
level, modelled with interaction with log time.

I Transition 2: Weibull baseline, age, tumour size, number
of positive nodes, hormonal therapy.

I Transition 3: Royston-Parmar with df=3, age, tumour
size, number of positive nodes, hormonal therapy.
Non-PH found in progesterone level, modelled with
interaction with log time.
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predictms, transmat(tmat) at(age 54 pr 1 3 sz2 1)

> models(m1 m2 m3)
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Figure: Probability of being in each state for a patient aged 54,
with progesterone level (transformed scale) of 3.
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predictms, transmat(tmat) at(age 54 pr 1 3 sz2 1)

> models(m1 m2 m3) ci
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Figure: Probability of being in each state for a patient aged 54,
50> size ≥20 mm, with progesterone level (transformed scale) of
3, and associated confidence intervals.
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Differences in transition probabilities
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Ratios of transition probabilities
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Length of stay

A clinically useful measure is called length of stay, which
defines the amount of time spent in a particular state.∫ t

s

P(Y (u) = b|Y (s) = a)du

Using this we could calculate life expectancy if t = ∞, and
a = b = 1 (Touraine et al., 2013). Thanks to the simulation
approach, we can calculate such things extremely easily.
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Length of stay
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Differences in length of stay
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. predictms, transmat(tmat) models(m1 m2 m3) ///

. at(age 54 pgr 3 size1 1) at2(age 54 pgr 3 size2 1) ci los
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Ratios in length of stay
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Sharing covariate effects

I Fitting models separately to each transition means we can
no longer share covariate effects - one of the benefits of
fitting to the stacked data

I We therefore want to fit different distributions, but
jointly, to the stacked data, which will allow us to
constrain parameters to be equal across transitions
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Transition-specific distributions, estimated jointly

. stms (age sz2 sz3 nodes pr 1 hormon, model(rp) df(3) scale(h)) ///

. (age sz2 sz3 nodes pr 1 hormon, model(weib)) ///

. (age sz2 sz3 nodes pr 1 hormon, model(rp) df(3) scale(h)) ///

. , transvar( trans)

constrain(age 1 3 nodes 2 3)

. predictms, transmat(tmat) at(age 34 sz2 1 nodes 5) ci
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Current work

I Standardised/population averaged predictions (Sjölander,
2016)

Sstd(t) =
1

n

n∑
i=1

Ŝi(t|Zi)

I Contrasts

1

n

n∑
i=1

Ŝi(t|X = 0,Zi)−
1

n

n∑
i=1

Ŝi(t|X = 1,Zi)
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Current work

I Standardised/population averaged transition probabilities
(Gran et al., 2015)

P std
ab (t) =

1

n

n∑
i=1

P̂ab(t|Zi)

I Contrasts

1

n

n∑
i=1

P̂ab(t|X = 0,Zi)−
1

n

n∑
i=1

P̂ab(t|X = 1,Zi)
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Current work

I Standardised/population averaged length of stay

LoS std
ab (t) =

1

n

n∑
i=1

ˆLoSab(t|Zi)

I Contrasts

1

n

n∑
i=1

ˆLoSab(t|X = 0,Zi)−
1

n

n∑
i=1

ˆLoSab(t|X = 1,Zi)
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. predictms , transmatrix(tmat) at(hormon 0) at2(hormon 1) los std
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Transition 2: Standardising over -> age sz2 sz3 nodes pr1

Transition 3: Standardising over -> age sz2 sz3 nodes pr1
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Summary
I The transition-specific distribution approach I’ve

described provides substantial flexibility

I We can fit a very complex model, but immediately obtain
interpretable measures of absolute and relative risk

I The simulation approach is extremely versatile and
generalisable

I Further predictions include centiles, plus anything else
you can think of!

I Software now makes them accessible
I ssc install multistate

I Other things to mention:
I Semi-Markov - reset with predictms
I Cox model will also be available (mstate in R)
I Reversible transition matrix, interval censoring
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