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Why we should become Bayesians (and often 

already are without realising it) 

• Frequentist and Bayesian statistics 

• Estimation of main effects 
– One exposure/outcome, one level of analysis 

– Many exposures/outcomes, one level of analysis 

– One/many exposures/outcomes, multilevel analysis 

• Estimation of bias 
– Selection bias 

– Information bias 

– Confounding 



Frequentist approaches 
Our “standard” statistical methods are based on frequentist theory 

which (usually) assume that: 

• The data have been sampled from an infinite population 

• Generalizability depends on representativeness 

• Exposure has been randomized (conditional on the confounders 

that have been controlled for) 

• No information from outside the study is taken into account 

These methods were developed for randomized controlled trials (and 

originally for agricultural experiments) where exposure is randomly 

assigned, and numbers are large 

Frequentist approaches depend on the model chosen; most methods 

of model selection ignore background information, and make 

questionable assumptions about interactions, dose-response 

relationships and lack of (uncontrolled) bias 

 



Frequentist approaches and causal inference 

Causal criteria (Bradford-Hill) in epidemiology involve many 

more considerations including, plausibility, coherence, 

specificity,  

Frequentist approaches attempt to make decisions solely 

on the basis of the data in the study being analysed 

Almost no-one is stupid enough to do this in practice 
• We take prior information into account when deciding to do a study 

• We take prior information into account when interpreting the findings of a study 

Thus, we write the methods and results sections of our 

papers as frequentists and the introduction and discussion 

as qualitative Bayesians 



Bayesian approaches to randomized trials: 
[Pocock SJ. J Roy Statist Soc 1994; 157: 357-416.] 

“One might adopt the term ‘closet Bayesian’ for statisticians 

and other scientists who adopt strategies in study design and 

data interpretation which include concepts of prior belief, but 

who do not explicitly express them in a formal Bayesian 

framework.” 

– “Bayesian conceptualization is very useful in study design.” 

– “It is useful to be a temporary Bayesian when faced with a 

surprising frequentist result.” 

– “It is useful that every medical statistics unit should have a 

resident Bayesian.” 

“Non-Bayesians need greater help in overcoming 

computational difficulties, in adapting Bayesian methods to 

more complex problems... and in learning how to 

commmunicate Bayesian findings to non-specialists.” 



Bayesian approaches 

Bayesian approaches formally take prior evidence into 

account.  

• Classically, this involves having some belief (the prior 

distribution) about what the evidence was before we did the 

study. This belief could be based on: 

• Prior data from similar studies 

• More “subjective” beliefs based on information apart from the data 

being analysed 

• This belief is then updated (the posterior distribution) on the 

basis of the new study 



Some caveats 
• I am using the term ‘Bayesian’ fairly loosely to refer to any 

data analysis which uses prior information 

• I am focussing on observational studies, not randomzied trials 

• Many of the analyses/methods I will present can be 

interpreted within a frequentist framework 

• I am (mostly) advocating supplementing rather than replacing 

frequentist with Bayesian methods 

• I am not going to present sophisticated Bayesian methods but 

will mostly use ‘back of the envelope’ calculations 

• “We would welcome suggestions for articles that supply equally easy to 

implement procedures or SAS or Stata procs. But please spare us 

methods that can only be implemented through R, WinBUGS, or by 

spending £100,000 or more on statistical programmers.” (Pearce and 

Greenland) 

 



Bayesian approaches do not require 

complex programming 

– Our standard methods use approximations which are quite 

adequate given the other uncertainties with most 

epidemiologic data  

– For example, most of our methods were developed at a time 

when exact tests were too complex computationally, but we 

still don’t use them now even though we could if we wanted to 

– Bayesian methods have become popular at a time when 

more complex computational methods (e.g. MCMC – 

Winbugs) are available; but these are not necessary  

– We can easily do Bayesian analyses using adaptations of 

our standard methods 



Why we should become Bayesians (and often 

already are without realising it) 

• Frequentist and Bayesian statistics 

• Estimation of main effects 
– One exposure/outcome, one level of analysis 

– Many exposures/outcomes, one level of analysis 

– One/many exposures/outcomes, multilevel analysis 

• Estimation of bias 
– Selection bias 

– Information bias 

– Confounding 



Effect estimation for one exposure/outcome: 

dioxin exposure and cancer 

• A New Zealand study found an increased risk of 
(total) cancer in phenoxy herbicide production 
workers exposed to dioxin: RR=1.24 (95% CI 0.90-
1.67) 

• A much larger international study had found similar 
findings 

• There is also evidence of the likely aetiological 
mechanism 

• As a result, the International Agency for Research 
on Cancer has classified dioxin as a Class 1 
(sufficient evidence) human carcinogen 



Effect estimation for one exposure/outcome: 

dioxin exposure and cancer 

• The “prior data” indicates a RR=1.29 (95% CI 0.94-

1.76) 

• The new study shows a RR=1.24 (95% CI 0.90-1.67) 

• The authors of the study concluded that the New 

Zealand findings were consistent with those of the 

larger international study 

• The New Zealand study was repeated by different 

researchers who got the same findings but concluded 

that there was no statistically significant increase in 

risk 

 



What if there is no “prior data”, but 

only “prior knowledge”?  

Relation of maternal antibiotic use during 

pregnancy (X = 1) to sudden infant death 

syndrome (SIDS, Y = 1), Kraus et al. 1989 

Antibiotics might be associated with  

• elevated risk (marking effects on the fetus of an 

infection, or via a direct effect) 

• reduced risk (by reducing presence of infectious 

agents). 

Source: Sander Greenland 



These are weak speculations, but  

suppose strong effects seem unlikely. 

 

A prior for ln(OR) that is normal with mean 0, 
standard deviation ln(4)/1.96 puts 95% 
probability on an OR between ¼ and 4 

i.e. the prior assumption is that it is “95% likely” 
that the odds ratio is in the range 0.25-4.00 
with the most likely value being 1.00  

(i.e. OR=1.00, 95% CI 0.25-4.00) 

Source: Sander Greenland 



Question: 

What is a “data equivalent” for the prior?  

That is, what data would give 

• 0 as the conventional ln(OR) point estimate 

• ln(4)/1.96 as its standard error?  

Answers to such questions can be found by 

thought experiments 

Source: Sander Greenland 



Augment the observed data with the prior 

data as a separate stratum: 

         PriorX=1                     PriorX=0 

               X=1      X=0    X=1        X=0 

Y=1           4       4    Y=1   173         602  

Y=0  100,000 100,000   Y=0   134         663  

         RRprior = 1.00                 OR =  1.42 

 95% PL = 0.25, 4.00    95% CL = 1.11, 1.83 

Source: Sander Greenland 



Now combine the strata using any 

conventional method… 

Approx. posterior median and 95% limits from 
Woolf, Mantel–Haenszel, and ML: 

    1.41 (1.10, 1.80) = precision-weighted 

In a regression, add the stratum as a set of two 
prior records (X=1,0) with 

• an indicator PriorX=1 for the two prior records 
(X=1,0), 0 for the remaining data 

• all other regressors set to their means 

Source: Sander Greenland 



Effect estimation for one exposure/outcome 

• One reasonable approach to the analysis of a an 

exposure-disease association for which there is 

prior data is to: 

– Summarize the “prior data” as a summary RR and 95% 

CI (i.e. a meta-analysis) 

– Estimate the RR and 95% CI in the new study 

– Calculate an “updated” summary RR and 95% CI 

including the new data 



Effect estimation for one exposure/outcome 

• This is the “classic” Bayesian approach. It is 

probably also the least useful because: 

– If we don’t have any empirical prior data, then any 

sensible prior will not include much information and won’t 

change our estimates very much (and there is always 

concern about strong “subjective” priors) 

– If we have good empirical prior data, we can just do an 

updated meta-analysis 

– If we do a series of studies, a series of Bayesian 

analyses will arrive at the same conclusions as we would 

have reached with a single meta-analysis conducted at 

the end of the series 

 



Point estimates and confidence intervals in 

five hypothetical studies 



Effect estimation 

– One exposure/outcome, one level of analysis 

– Many exposures/outcomes, one level of analysis 

– One/many exposures/outcomes, multilevel 

analysis 



Effect estimation: 

many exposures/outcomes 

• When we do a study involving many different 
exposures/outcomes, some of them will have strong “a priori” 
evidence and some will not 

• Standard (frequentist) methods for multiple comparisons (e.g. 
Boferoni corrections) do not take prior knowledge into account, 
and in any case deal only with the statistical significance, not the 
magnitude of individual effect estimates 

• The strongest associations are likely to be due in part to chance, 
and to show “regression to the mean” if the study were repeated 

• Empirical Bayes (EB) or Semi-Bayes (SB) methods attempt to 
“correct for” extra variation and to anticipate “regression to the 
mean” 



A Large-Scale, Consortium-Based 
Genomewide Association Study of Asthma  
(Moffatt, NEJM 2010)   



Moffatt et al. A large-scale consortium-

based genomewide association study of 

asthma. N Engl J Med, 23 September 2010 

• Brings together data from 23 studies; largest analysis 

ever conducted 

• 10,365 asthma cases and 16,110 non-asthmatic controls 

• 582,892 SNPs evaluated; 15 billion genotypes 

• 10 loci identified; largest odds ratio was 1.27 

• Estimated that these 10 loci together had a population 

attributable risk of about 30% 



Regression to the mean 
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High risk occupations for Non-Hodgkin’s Lymphoma in New Zealand 

A case-control study  



Example of multiple exposures: 

New Zealand case-control study of occupation 

and non-Hodgkin’s lymphoma 

– Many different job titles and exposures 

– Some have strong prior evidence of an 

association with bladder cancer, but most do not 

– In the latter case, we would expect the most 

“extreme” ORs to be in part due to chance, and 

to demonstrate “regression to the mean” if the 

study were repeated 



 

cases/ 
controls 

(n) 
OR 
 

95%CI 
 

    

OCCUPATION    
    

611-Market Farmers and Crop Growers 41/44 1.48 (0.92-2.37) 
6111-Field Crop and Vegetable Growers 12/7 2.74** (1.04-7.25) 
6112-Fruit Growers 20/20 1.63 (0.84-3.16) 
6113-Gardeners and Nursery Growers 17/18 1.27 (0.63-2.58) 
61131-Nursery Grower, Nursery Worker 10/5 3.16** (1.03-9.69) 
    

612-Market Oriented Animal Producers 44/81 0.80 (0.52-1.21) 
6121-Livestock Producers 19/43 0.65 (0.36-1.16) 
6122-Mixed Livestock Producers 12/19 1.13 (0.53-2.40) 
6125-Crop and Livestock Producers 14/29 0.71 (0.36-1.41) 
    
INDUSTRY    
    

A011-Horticulture and Fruit Growing 41/32 2.28** (1.37-3.79) 
A0111-Plant Nurseries 8/3 4.30** (1.08-17.2) 
A0113-Vegetable Growing 11/8 2.32* (0.90-6.00) 
A0115-Apple and Pear Growing 9/3 4.91** (1.26-19.1) 
A0117-Kiwi Fruit Growing 7/6 1.77 (0.55-5.63) 
    

A012-Grain, Sheep, Beef Cattle Farming 14/39 0.56* (0.29-1.08) 
A013-Dairy Cattle Farming 14/36 0.55* (0.29-1.07) 
A015-Other Livestock Farming 9/2 9.75** (2.04-46.5) 
    

 

High risk occupations for Non-Hodgkin’s Lymphoma in New Zealand: case-control study 

*p<0.1 

**p<0.05 

a priori high risk occupations and industries : farming 



Semi-Bayes estimates 

 
Are these odds ratios elevated due to chance? 

 

Particularly those odds ratio estimates based on small numbers 

could be elevated due to chance. 

 

SB adjustment: shrinks the outlying relative risks towards the 

overall mean (of the relative risks of all occupations/industries).  

 

The larger the individual variance of the relative risks, the 

stronger is the shrinkage, i.e. the shrinkage is stronger for less 

reliable estimates based on small numbers. 

High risk occupations for Non-Hodgkin’s Lymphoma in New Zealand: case-control study 
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A priori high risk occupations and industries – effect of semi-Bayes adjustment  

* * 

High risk occupations for Non-Hodgkin’s Lymphoma in New Zealand: case-control study 

12/7                  10/5                 41/32                  8/3                    9/3                    9/2                   33/30 



A posteriori high risk occupations and industries 

High risk occupations for Non-Hodgkin’s Lymphoma in New Zealand: case-control study 

 

cases/ 
controls 

(n) 
OR 
 

95%CI 
 

    

OCCUPATION    
    

31-Physical Science and Engineering Prof. 26/27 1.85** (1.03-3.35) 
91-Labourers and Rel. Elementary  86/84 1.76** (1.22-2.56) 
91111-Cleaner 34/32 2.11** (1.21-3.65) 
914-Packers and Freight Handlers 29/21 1.89** (1.02-3.49) 
    
INDUSTRY    
    

H572-Pubs, Taverns and Bars 10/4 3.68** (1.11-12.3) 
O8729-Non-Residential Care Services nec 8/4 3.98** (1.13-14.1) 
    

 

**p<0.05 
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A posteriori high risk occupations and industries – effect of semi-Bayes adjustment  

* * 

High risk occupations for Non-Hodgkin’s Lymphoma in New Zealand: case-control study 

27/27                    86/84                   34/32                    29/21                    10/4                      8/4        



Effect estimation: 

many exposures/outcomes 

• In some instances, “exposures” may be linked (e.g. 
adjacent geographical areas, or adjacent years 
when examining time trends) 



Mesothelioma rates in Piedmont, Italy: 

men [Maule MM, et al]  

 

BMR Pleura (men) 

TORINO 

CUNEO 

BIELLA VERBANIA 

NOVARA 

VERCELLI 

ALESSANDRIA 

ASTI 

CASALE M.TO 

range: 0.42 – 17.88 range: 0 – 17.03 



Mesothelioma rates in Piedmont, Italy: 

women [Maule MM, et al]  

 

 

 

BMR Pleura (women) 

TORINO 

CUNEO 

BIELLA VERBANIA 

NOVARA 

VERCELLI 

ALESSANDRIA 

ASTI 

CASALE M.TO 

range: 0 – 30.78 range: 0.37 – 23.37 



Effect estimation 

– One exposure/outcome, one level of analysis 

– Many exposures/outcomes, one level of analysis 

– One/many exposures/outcomes, multilevel 

analysis 



Hierarchical Regression for multiple comparisons: 

Application to a case-control study of  

occupational risks for lung cancer  

Marine Corbin, Roel Vermeulen, Hans Kromhout, Susan Peters, Lorenzo Simonato,  

Lorenzo Richiardi, Franco Merletti, Neil Pearce, Milena Maule 

Cancer Epidemiology Unit 

Department of Biomedical Sciences  

and Human Oncology 

University of Turin 

Italy 

Centre for Public Health Research 

Massey University 

Wellington 

New Zealand 



Existing methods for adjustment for 

multiple comparisons 

 

• Traditional Bonferroni adjustment: 

Criticized because  

 It treats all the associations equally 

 It only affects the p-values 

 

• Semi-Bayes adjustment towards the global mean  

 Specification of an a priori true standard deviation of the log ORs 

 Shrinkage of the log ORs towards the global mean 



Hierarchical Regression 

• Inclusion of prior knowledge about carcinogenic exposures in a 
2nd-stage model: Occupations with similar exposures to known 
carcinogens entail similar risks of disease  

 

• Shrinkage of the log ORs towards each other when they have 
similar carcinogenic exposures 



The first-stage models 

• Estimation of the ORs of lung cancer through logistic 

regression for the 129 occupations represented by 3-digit 

ISCO codes and held by at least 10 subjects 

 

• Adjustment for age, centre and cigarette smoking status 

   iiiwY  w ii occ,occ1Prlogit



The 2nd-stage model (1) 

• DOM-JEM: Job Exposure Matrix that classifies occupations 

in three categories of exposure (0=none, 1=low, 2=high) to 

several lung carcinogens 

 

• Selection of 3 lung carcinogens (Agents classified by the 

IARC Monographs as group-1 = carcinogenic to humans): 

asbestos, chromium and silica to be included in the 2nd-

stage model 



The 2nd-stage model (2) 

UZ  

Occupation Elements of matrix Z 

Asb1 Asb2 Ch1 Ch2 Si1 Si2 

Nursery workers and 

gardeners 
0 0 0 0 1 0 

Farm machin. operators 0 0 0 0 0 1 

Loggers 0 0 0 0 0 0 

Fishermen 0 0 0 0 0 0 

Production supervisors 0 0 0 0 0 0 

Miners & quarrymen 1 0 0 0 0 1 



The 2nd-stage model (3) 

       is a vector of the error terms representing the residual effect of being 

employed in each occupation after accounting for the exposure to asbestos, 

chromium and silica  

T
2

U

 T0U
2,N ~

is specified a priori 

      controls the global strength of the shrinkage  and is set successively to 0.76, 0.59, 

0.41, 0.23 

      is a Diagonal matrix where        is inversely related to the sum of the 

categories of exposure of the occupation to asbestos, chromium and silica 
iit



T

UZ  



Computation of the Hierarchical 

Regression estimates 

• Estimation of the 2nd-stage coefficients      through 
weighted least squares 

 

• Computation of the prior means         for the occupations 
coefficients    

 

• Computation of the posterior Hierarchical Regression 
estimates  

 

 

 

       increases when the variance of        increases 

       decreases when      increases 

~

~Z

T
2

  ˆ~~
HR BIBZ 

̂B



Results (1) 
ML SB HR 

τ=0.76 τ=0.59 τ=0.41 τ=0.23 

Mean of the log ORs 

distribution 
-0.12 -0.07 -0.08 -0.07 -0.06 -0.04 

Standard Deviation of the log 

ORs distribution 
0.63 0.31 0.41 0.35 0.28 0.20 

Mean of the Standard 

Deviations of the log ORs 
0.45 0.32 0.37 0.34 0.28 0.20 



Results (3) 

Occupation ML SB 
HR Carcinogenic 

exposure τ=0.76 τ=0.59 τ=0.23 

OR 

[95% CI] 

OR 

[95% CI] 

OR 

[95% CI] 

OR 

[95% CI] 

OR 

[95% CI] 
Asb Ch Si 

Tailors and 

dress makers 

2.1 

[0.9-5.0] 

1.5 

[0.8-3.0] 

1.6 

[0.8-3.5] 

1.5 

[0.7-3.0] 

1.0 

[0.7-1.6] 
0 0 0 

Metal melters 

and reheaters 

2.1 

[0.7-5.7] 

1.4 

[0.7-3.0] 

1.8 

[0.9-3.9] 

1.8 

[0.9-3.5] 

1.7 

[1.1-2.6] 
1 2 0 

Miners and 

quarrymen 

1.2 

[0.6-2.4] 

1.1 

[0.6-2.0] 

1.2 

[0.6-2.4] 

1.3 

[0.7-2.4] 

1.3 

[0.7-2.5] 
1 0 2 

Painters, 

construction 

1.8 

[1.1-3.1] 

1.6 

[1.0-2.6] 

1.7 

[1.0-2.7] 

1.6 

[1.0-2.5] 

1.2 

[0.9-1.7] 
1 0 0 



Conclusions 
 

• Hierarchical Regression uses more specific priors than Semi-Bayes 
adjustment towards the global mean and performs then a more appropriate 
shrinkage if the information included in the 2nd-stage model is reliable 

 

• The choice of     depends on 
– The number and the reliability of the variables included in the 2nd-stage model. 

– The strength of their association with the outcome and the exposures of interest 

– The specification of the first-stage model 

 

• Hierarchical regression is a valuable method to adjust for multiple 
comparisons in occupational studies when a reliable JEM is available 

 





Heirarchical regression: 

Equivalents and special cases 
[Greenland S. Int J Epidemiol 2000; 29: 158-67] 

• Multilevel modelling 

• Bayesian regression 

• Empirical Bayes (EB) regression 

• Bayes Empirical Bayes (BEB) regression 

• Stein regression 

• Penalized likelihood regression 

• Best Linear Unbiased Prediction (BLUP) 

• Mixed-model regression 

• Ridge regression 

• Random-coefficient regression 

• Variance-components analysis 

Source: Sander Greenland 



Heirarchical regression: 

Equivalents and special cases 
[Greenland S. Int J Epidemiol 2000; 29: 158-67] 

• Hierarchical regression unifies frequentist and Bayesian methods 

of analysis 

• It also effectively takes account of “clustering” – a one-level model 

produces confidence intervals that are too wide 

• Conventional least squares and maximum likelihood are also 

special cases with just one level of analysis 

• EB “adjustments” are a special case where the second-stage 

“prior” means are estimated from the data 

• We can also add ‘second level’ information, e.g. on which 

occupations involve exposure to particular chemicals, or which 

chemicals have common properties 

 Source: Sander Greenland 



Why we should become Bayesians (and often 

already are without realising it) 

• Basics of frequentist and Bayesian statistics 

• Estimation of main effects 
– One exposure/outcome, one level of analysis 

– Many exposures/outcomes, one level of analysis 

– One/many exposures/outcomes, multilevel analysis 

• Estimation of bias 
– Selection bias 

– Information bias 

– Confounding 



Approaches to bias modeling:  
uncontrolled confounding 

• We have no information on a potential confounder (e.g. 
smoking) 

• If we can make assumptions about the associations 
between the potential confounder and the main exposure 
and between the potential confounder and the disease we 
can make “adjusted” estimates controlling for the potential 
confounder 

• By varying these assumptions we can do a “sensitivity 
analysis” of the likely bias due to uncontrolled confounding 



Cause-specific Mortality in a New Zealand cohort study of 

meat workers 

Cause of death (ICD-9) Obs Exp SMR 95% CI 

All Causes 227 203.6 1.12 0.98 - 1.27 

All Cancer (140-208) 69 61.4 1.12 0.88 - 1.42 

 Larynx (161) 1 0.4 2.63 0.07 – 14.62 

 Lung (162) 23 12.9 1.79* 1.13 – 2.68 

 Haematologic (200-208) 6 6.3 0.96 0.35 – 2.09 

 NHL (200, 202) 4 2.8 1.45 0.49 – 3.45 

 Leukaemia (204 – 208) 2 2.3 0.86 0.17 – 2.75 



Systematic Error (bias): 

lung cancer in meat industry workers 

• No information on smoking or ethnicity 

• There was a small increase in mortality (SMR=1.31) but not 
incidence (SIR=0.90) for other smoking-related cancers 

• Census information suggests that smoking rates in food and 
beverage workers are only slightly higher than in other 
workers, and that this could only account for a RR of 1.20 

• Lung cancer mortality in Māori males is 1.4 times than in 
non-Māori males, and that in Māori females is 2.8 times that 
in non-Māori females; assuming that 40% of the cohort is 
Māori (compared with 15% of the general population) this 
would produce a RR of 1.09 

 



Approaches to bias modeling 
[Steenland K, Greenland S. Am J Epidemiol 2004; 160: 384-92] 

• Ordinary sensitivity analysis does not take account 
(easily) of uncertainties about the relationship 
between the confounder and disease, or random 
error in the “sampling” of the study population 

• It also does not (easily) take account of multiple 
sources of bias 

• It does not easily allow for control of (other) 
confounders 

• It can sometimes be improved upon through the 
use of Monte Carlo Sensitivity Analysis or Bayesian 
methods 

 



Approaches to bias modeling: 

misclassification 

• Misclassification is a problem of missing data – we 
have data on a ‘measured’ variable, but not data on 
the ‘true’ variable 

– If there is a validation substudy, we can use multiple 
imputation 

– ‘Standard’ sensitivity analysis 

– Probabilistic/Monte Carlo sensitivity analysis 

– Bayesian sensitivity analysis using data augmentation 



Approaches to bias modeling:  
misclassification of the main exposure 

• We have no information on the true exposure (e.g. asbestos 
levels in the lung) 

• We have imperfect information on a surrogate for the main 
exposure (e.g. cumulative asbestos exposure from a job-
exposure-matrix) 

• If we can make assumptions about the association between 
the true exposure and the surrogate measure (e.g. it’s 
sensitivity and specificity) then we can “impute” the missing 
values for the true exposure 

• By varying these assumptions (about sensitivity and 
specificity) we can do a “sensitivity analysis” of the likely 
bias due to misclassification 



 

Marine Corbin, Milena Maule, Neil Pearce 
 
Centre for Public Health Research 
Massey University  
Wellington  
New Zealand 
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The lung cancer case-control study 

•    Incident lung cancer cases notified 2007-2008 to the NZ Cancer Registry (aged 

20-75) 

•    Population controls selected from the Electoral Roll   
OR crude=7.51 (5.41-10.43) 

ORadjusted=7.74 (5.49-10.91) 

We will use the lung cancer 

data set and assume that the 

measured smoking data is 

misclassified, and then estimate 

what the “true” odds ratio for 

smoking would have been if 

there had not been 

misclassification, first using 

standard sensitivity analysis, 

and then probabilistic 

sensitivity analysis 



Standard sensitivity analysis - Method 
 

1. Determination of an a priori value for the bias parameters (sensitivity={0.6, 0.7, 

0.8, 0.9, 1} and specificity ={0.6, 0.7, 0.8, 0.9, 1}) 
 

2. Calculation of the corrected frequencies according to the following formulas 

 
Observed Corrected data 

Ever smokers Never smokers Ever smokers Never smokers 

Cases a b A B 

Controls c d C D 

Total a+c b+d A+B C+D 

With    A=[a-NCases(1-SP)]/[SE-(1-SP)] 

          C=[c-NControls(1-SP)]/[SE-(1-SP)] 

          B=NCases-A 

          D=NControls-C 

3. Estimation of the corrected odds ratio of the association between smoking 
and lung cancer using the corrected frequencies  



Standard sensitivity analysis - Results 
Sensitivity Specificity OR 

1 0.6 17.47 

1 0.7 11.66 

1 0.8 9.42 

1 0.9 8.24 

1 1 7.51 

Sensitivity Specificity OR 

0.6 1 NA 

0.7 1 NA 

0.8 1 NA 

0.9 1 83.08 

1 1 7.51 

Sensitivity Specificity OR 

0.6 0.6 NA 

0.7 0.7 NA 

0.8 0.8 NA 

0.9 0.9 91.15 

1 1 7.51 



Probabilistic sensitivity analysis 

• Probabilistic sensitivity analysis and multiple imputation are 

useful methods to correct for misclassification 
 

• Both methods have the advantage, compared with “standard” 

sensitivity analysis, that they enable adjustment for covariates 
 

• A validation substudy must be available to use multiple 

imputation to correct for misclassification 
 

• Probabilistic sensitivity analysis can be regarded as Semi-

Bayesian and it is easier to compute than fully Bayesian 

sensitivity analysis 

 
 

 



Standard sensitivity analysis 

1) Determination of an a priori distribution for the sensitivity and the 

specificity: Trapezoidal distribution (min=0.60, mode1=0.85, 

mode2=0.98, max=1) 

 
 

 

 

 

 

 

 

min mode1 mode2 max 



Standard sensitivity analysis - Correction for 

the crude association 

Use of an Excel spreadsheet related to  Lash TL., Fox MP., Fink AK. Applying 

quantitative bias analysis to epidemiologic data. 

https://sites.google.com/site/biasanalysis/ 

 
OR simulation results (N=500) 

Analysis Median (2.5th-97.5th percentile) 

Conventional  7.51 (5.41-10.43) 

Corrected for misclassification 17.83 (8.9-288.51) 

https://sites.google.com/site/biasanalysis/


Probabilistic sensitivity analysis - Method 

1) Determination of an a priori distribution for the sensitivity and the 

specificity: Trapezoidal distribution (min=0.60, mode1=0.85, 

mode2=0.98, max=1) 

 
 

 

 

 

 

2) Random draw of 500 combinations for the sensitivity and specificity 

from these distributions 
 

3) Estimation of the corrected association for each combination of 

sensitivity and specificity to obtain a distribution of the corrected 

estimates 

 

 

min mode1 mode2 max 



Probabilistic sensitivity analysis:  

Correction for misclassification 

Use of a SAS macro program related to Fox MP., Lash TL., Greenland S. A 

method to automate probabilistic sensitivity analyses of misclassified binary 

variables 

 

1) For each simulation, after calculating the corrected frequencies, the macro 

program calculates the positive predictive value and the negative predictive value. 

2) These values are applied to each individual to simulate the corrected smoking 

status.  

3) The association between smoking and lung cancer can then be estimated 

through a logistic regression model, adjusting for all the covariates. 

 



Probabilistic sensitivity analysis: 

Correction for misclassification 

OR simulation results (N=500) 

Analysis Median (2.5th-97.5th percentile) 

Conventional  7.80 (5.53-10.85) 

Corrected for misclassification 19.78 (9.50-214.78) 



Frequentists and Bayesians 

(some stereotypes) 
 Frequentist Bayesian 

Significance testing (p-values, CIs) Effect estimation (confidence 

intervals/distributions) 

Methods/results focus on random error 

and (measured) confounding 

Methods/results focus on systematic error 

(bias) in addition to random error 

Systematic error considered in discussion Systematic error also considered in 

methods/results 

Prior knowledge only considered in 

introduction/discussion 

Prior knowledge formally incorporated into 

analysis 

Generalisability/representativeness Causal inference 



Problems with p-values 

Rothman KJ. A show of confidence. N Engl J Med 1978; 

299: 1362-1363. 

Gardner MJ, Altman DG. Confidence intervals rather 

than p-values: estimation rather than hypothesis 

testing. Br Med J 1986; 292: 746-750. 

Pearce N, Jackson RT. Statistical testing and estimation 

in medical research. NZ Med J 1988; 101: 569-570. 

‘Medical professionals and regulators act on the basis of 

evidence of causation that is not statistically 

significant’ [US Supreme Court, 2011] 

 

 



The elephant in 

the room 
Random error is not the 

main concern in 

epidemiological studies 

Systematic error (bias) is: 

selection bias, 

misclassification, 

confounding 

We need to spend as much time/effort 

quantitatively assessing systematic error as we 

spend assessing random error 



Why we should all be Bayesians 

– We write the methods and results sections of our 

papers as frequentists and the introduction and 

discussion as qualitative Bayesians  

– The Bayesian approach moves the consideration of 

prior evidence from the introduction and discussion 

sections to the methods and results sections 

– Prior evidence can be used both in effect estimation 

and in assessment of systematic error (bias) 

– Subjective personal judgements (which are inherent in 

both frequentist and Bayesian methods) are made 

more explicit and the effects of changes in these 

assumptions can be assessed 



Why we should become Bayesians (and 
often already are without realising it) 
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