What does the odds ratio estimate in a case-control study?

Neil Pearce Department of Medical Statistics London School of Hygiene and Tropical Medicine

How to design a case-control study

- Design the ideal randomised trial that you would really like to do
- Design the cohort study that corresponds to this randomised trial (except that exposure has not been randomised)
- Design the case-control study that corresponds to that cohort study

What does the odds ratio estimate in a case-control study?

- Cohort studies
- Selection of controls for case-control studies
- Implications

A Hypothetical Incidence Study: risks

	Exposed	Non-exposed	Ratio
Cases	1,813	952	
Non-cases	8,187	9,048	
Total	10,000	10,000	
Incidence proportion	0.1813	0.0952	1.90

Incidence Proportion (Risk)

- Proportion of study participants who experience the outcome (for the first time)
- When there are significant "losses to followup" the incidence proportion cannot be estimated directly

World Death Rate Holding Steady At <u>100 Percent</u>

January 22, 1997 | Issue 31 • 02

GENEVA, SWITZERLAND—World Health Organization officials expressed disappointment Monday at the group's finding that, despite the enormous efforts of doctors, rescue workers and other medical professionals worldwide, the global death rate remains constant at 100 percent.

Death rates since 1992

Death has long been considered humanity's number one health concern. Responsible for 100 percent of all recorded fatalities worldwide, the condition has no cure.

A Hypothetical Incidence Study: rates

	Exposed	Non-exposed	Ratio
Cases	1,813	952	
Non-cases	8,187	9,048	
Total	10,000	10,000	
Person-years	90,635	95,163	
Incidence rate	0.0200	0.0100	2.00

Incidence Rate

 Number of new cases per unit time (e.g. per 100,000 person-years)

- cancer death actively employed
- other death

- not actively employed
- lost to follow up

- cancer death actively employed
- other death

- not actively employed
- lost to follow up

A Hypothetical Incidence Study: odds

	Exposed	Non-exposed	Ratio
Cases	1,813	952	
Non-cases	8,187	9,048	
Total	10,000	10,000	
Incidence odds	0.2214	0.1052	2.11

Incidence Odds

- Ratio of number of people who experience the outcome to the number of people who do not experience the outcome
- Has unfortunate statistical properties (particularly non-collapsibility) which mean that it should not be used as an outcome measure in a cohort study

A Hypothetical Incidence Study: odds

	Exposed	Non-exposed	Ratio
Cases	1,813	952	
Non-cases	1,187	2,048	
Total	3,000	3,000	
Incidence odds	1.53	0.46	3.29

Example of non-collapsibility of odds ratios

	Young		Old		Total	
	Exposed	Non- exposed	Exposed	Non- exposed	Exposed	Non- exposed
Cases	575	183	1,238	769	1,813	952
Non-cases	925	1,317	262	731	1,187	2,048
Total	1,500	1,500	1,500	1,500	3,000	3,000
Odds ratio	4.47		4.49		3.29	

Effect Measures in Incidence Studies

- Risk ratio
- Rate ratio
- Odds ratio

A Hypothetical Incidence Study

	Exposed	Non-exposed	Ratio
Cases	1,813	952	
Non-cases	8,187	9,048	
Total	10,000	10,000	
Person-years	90,635	95,163	
Incidence proportion (risk)	0.1813	0.0952	1.90
Incidence rate	0.0200	0.0100	2.00
Incidence odds	0.2214	0.1052	2.11

What does the odds ratio estimate in a case-control study?

- Cohort studies
- Selection of controls for case-control studies
- Implications

Control Sampling Strategies

- Rodrigues L, Kirkwood BR. Case-control designs in the study of common diseases: updates on the demise of the rare disease assumption and the choice of sampling scheme for controls. Int J Epidemiol 1990; 19: 205-213.
- Pearce N. What does the odds ratio estimate in a case-control study? Int J Epidemiol 1993; 22: 1189-1192.

Control Sampling Strategies

- Cumulative sampling (exclusive sampling)
 - Cornfield (1951)
- Case-cohort sampling (inclusive sampling)
 - Thomas (1972)
 - Kupper et al (1975)
 - Miettinen (1982)
 - Smith et al (1984)
 - Prentice (1986)
- Density sampling (concurrent sampling)
 - Sheehe (1962)
 - Miettinen (1976)

A Hypothetical Incidence Study: odds

	Exposed	Non-exposed	Ratio
Cases	1,813	952	
Non-cases	8,187	9,048	
Total	10,000	10,000	
Incidence odds	0.2214	0.1052	2.11

A Hypothetical Case-Control Study

	1813/8187		a/c	ad
Odds ratio =		=		=
	952/9048		b/d	bc
	4040/050		o /lo	
	1813/952		a/b	
=	8187/9048	=	c/d	= bc

Cumulative Sampling

- "Traditional" method of control selection in nested case-control studies
- Controls are sampled from the "non-cases", those free of disease at the *end* of the followup period, I.e. the *survivors*
- I.e. controls are sampled from the denominators for (cohort) odds ratio analyses

A Hypothetical Incidence Study: odds

odds

	Exposed	Non-exposed	Total
Cases	1,813	952	2,765
Non-cases	8,187	9,048	17,235
Total	10,000	10,000	20,000
			Odds ratio
Incidence	1813/8187	952/9048	2.11

A Hypothetical Case-control Study

	Exposed	Non-exposed	Total
Cases	1,812	952	2,765
Controls	1,313	1,452	2,765

		C	Odds ratio
Odds	1813/1313	952/1452	2.11

Cumulative Sampling

- Estimates the (cohort) odds ratio (without any rare disease assumption)
- Estimates the risk ratio and rate ratio approximately (with a rare disease assumption)
- May involve matching on age, etc
- Exposure is usually only considered up to the "time" that the case occurred
- Cornfield (1951)

Case-cohort Sampling

- Controls can be selected from those at risk at the *beginning* of the follow-up period, I.e. from the entire *source population*
- I.e. controls are selected from the denominators for (cohort) risk ratio analyses
- Also known as case-base sampling

A Hypothetical Incidence Study: risk

	Exposed	Non-exposed	Total
Cases	1,813	952	2,765
Total	10,000	10,000	20,000

Odds ratio 1813/10000 952/10000 1.90

A Hypothetical Case-Control Study

	Exposed	Non-exposed	Total	
Cases	1,813	952	2,765	
Controls	1,383	1,383	2,766	

Odds	1813/1383	952/1383	1.90

Odds ratio

Case-Cohort Sampling

- Estimates the risk ratio (without any rare disease assumption)
- Requires minor modifications to the standard formulas for confidence intervals and p-values
- May involve matching on age, etc
- Once again, exposure is usually only considered up until the "time" that the case occurred
- Thomas (1972), Kupper et al (1975), Miettinen (1982), Smith et al (1984), Prentice (1986)

Density Sampling

- Controls are selected longitudinally throughout the course of the study, i.e. from the *person-time* of the study base
- I.e. controls are sampled from the denominators for the *rate ratio* analyses, i.e. from the person-years
- In general, controls are selected from the *"risk set"* of persons at risk at the "time" that each case occurred

A Hypothetical Incidence Study

	Exposed	Non-exposed	Total
Cases	1,813	952	27,643
Person-years	90,635	95,163	185,798

Incidence 1813/90635 952/95163 2.00 rate

Rate ratio

A Hypothetical Case-Control Study

	Exposed	Non-exposed	Total	
Cases	1,813	952	2,765	
Controls	1,349	1,416	2,765	

Odds ratio 0dds vatio 2.00

- cancer death actively employed
- other death
- not actively employed
- lost to follow up

Density Sampling

- Estimates the rate ratio (without any rare disease assumption)
- The "time" variable can be:
 - survival time (proportional hazards analysis)
 - age (nested case-control study)
 - calendar time (nested or population-based case-control study)
- Matching may also be done on other timerelated factors
- Sheehe (1962), Miettinen (1976)

Sampling options in case-control studies

		What does the case-control odds ratio estimate?
Cumulative sampling (Exclusive)	Cornfield (1951)	Odds ratio
Case-cohort sampling (Inclusive)	Thomas (1972) Kupper et al (1975) Miettinen (1982) Smith et al (1984) Prentice (1986)	Risk ratio
Density sampling (Concurrent)	Sheehe (1962) Miettinen (1976)	Rate ratio

What does the odds ratio estimate in a case-control study?

- Cohort studies
- Selection of controls for case-control studies
- Implications

Control Sampling Strategies

- Cumulative sampling (exclusive sampling)
- Case-cohort sampling (inclusive sampling)
- Density sampling (concurrent sampling)
- Which method do we use in populationbased case-control studies?

A hypothetical case-control study of lung cancer in London

- cancer death
- other death
- Iost to follow up

A hypothetical case-control study of lung cancer in London

- cancer death
- other death
- Iost to follow up

Sampling options in case-control studies

		Nested case- control studies	Population- based case- control studies	What does the case-control odds ratio estimate?
Cumulative sampling (Exclusive)	Cornfield (1951)	No	No	Odds ratio
Case-cohort sampling (Inclusive)	Thomas (1972) Kupper et al (1975) Miettinen (1982) Smith et al (1984) Prentice (1986)	Yes	No	Risk ratio
Density sampling (Concurrent)	Sheehe (1962) Miettinen (1976)	Yes	Yes	Rate ratio

Common misconceptions about case-control studies

- Fundamentally different type of study design that proceeds from disease to exposure (retrospective)
- Inherently less valid (more biased) than cohort studies
- Require a rare-disease assumption
- Odds ratio only approximates the rate ratio or risk ratio (under the rare disease assumption)

Why do these misconceptions persist?

- Inertia researchers (and their parents and grandparents) were taught case-control studies the Cornfield way, and it's hard to change
- "It's easier" but only if you have been taught the Cornfield way yourself

Why do these misconceptions matter?

- It's always important to get the theory right
- These misconceptions fuel the incorrect belief that case-control studies are inherently inferior and prone to bias
- If we teach the wrong theory it makes it harder to teach the right theory in more depth later on
- Getting the theory right helps guide our choice of control selection - if someone is contributing person-years at the "time" that a case occurs, then they are eligible to be selected as a control

What does the odds ratio estimate in a case-control study?

Neil Pearce Department of Medical Statistics London School of Hygiene and Tropical Medicine