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Background 

 PhD thesis “Statistical methods to address selection bias in economic evaluations 
that use patient-level observational data” 

 
- Funding by ESRC 
- Supervisor Richard Grieve, advisory committee James Carpenter, John Cairns, 

Rhian Daniel  
 
- Applying and extending methods from the causal inference literature for cost-

effectiveness analysis 
 
Challenges: 
- Estimating treatment effects 
- Correlated costs and outcomes 
- Endpoints with skewed distributions 
- Nonlinear relationships between the covariates and the endpoints 
- Subgroup-effects of interest 
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Context 

- Health policy makers require estimates of clinical and cost-effectiveness 
 

- Observational data often used 
 

- Motivating example: comparative effectiveness of alternative types of hip 
replacement on patients’ post-operative quality of life 
 
 

- Main challenge: control for confounding 
- Assume no unmeasured confounding 
 

-  Statistical methods to adjust for observed confounding: 
–  Modelling endpoint: regression methods 
–  Modelling assignment mechanism: propensity score (PS) methods 
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Context 

– “Combined” approaches recommended (Rubin, 1973): 

- Regression + PS weights: double-robust methods (Robins and colleagues) 

- PS matching  + regression: regression-adjusted matching, bias-corrected 
matching 

 

– Interest in finite sample performance when both models are misspecified 
(Kang and Schafer, 2007) 

 

– Machine-learning methods to reduce bias due to misspecification (Porter et al, 
2011; Lee et al., 2010; Austin, 2010) 

 

– Little work on comparing matching and DR methods (Waernbaum, 2010; Busso 
et al., 2011) 

 

Objective: to compare two approaches that combine the PS with regression:  
targeted maximum likelihood estimation (van der Laan and Rubin, 2006) and 
bias-corrected matching (Abadie and Imbens, 2010) 
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Outline 

1. Potential outcomes framework and notation 

2. Limitations of “standard” methods 

- Regression 

- PS methods: matching, IPTW 

3. Double-robust methods 

- Targeted maximum likelihood estimation 

4. Bias-corrected matching 

5. Motivating case study 

6. Simulation design 

7. Simulation results 

8. Discussion 
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Potential outcomes framework 

-          is the potential outcome under treatment and           under control 

-         : vector of confounders 

-      : binary, time-constant treatment  

- Parameter of interest: average treatment effect (ATE): 

 

- Under no unmeasured confounding: 

                          

 

- Further assumptions: consistency and positivity 
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Positivity assumption 
(Westreich and Cole, 2010)  

- Model for the treatment assignment: 
 
- Positivity assumption holds if                             for any   

- possible to have units at every combination of the observed 
confounders 

- experimental treatment assignment, common support,  good overlap 
 

- Structural positivity violations  -> ATE cannot be identified 
 
- “Practical positivity violations” – finite sample issue, small numbers 

or no individuals for some 
 
- Problem for methods that use 
- Here, referred to as poor overlap 
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Regression 

- To estimate expected potential outcomes, controlling for observed 
confounders 

 
- Regression function: 
 
- Regression estimator:  
 
 - In practice,                    obtained using fixed, parametric models e.g. GLMs  
 
- If large imbalance in the baseline distribution of confounders, regression 

estimates sensitive to misspecification (Ho et al, 2007) 
 
- Objective:  reduce functional form misspecification 
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Machine learning estimation 
 for the endpoint regression function 

-  Instead of fixed, parametric models, more flexible approaches to estimate 
the regression function 

– Regression trees, random forests  (Austin, 2012) 

 

 - “Super learner” (van der Laan and Polley, 2007) 

– Prediction algorithm 

- For causal inference: predictions for both potential outcomes  

– User defines the range of algorithms (from fixed parametric models, to 
nonparametric) 

– Selects convex combination based on cross validation 

– Software: http://cran.r-project.org/web/packages/SuperLearner/index.html 

12 



Controlling for observed confounding 

Confounders 

Treatment 

Endpoint 

Regression 
function Q(A,W) 
      
        
 

Treatment 
assignment  model   
g (A, W) 

Treatment effect of 
interest 

13 



 Propensity score methods 

-  Propensity score:                                               
 

- Matching: impute missing counterfactual, using information from the 
closest matches (measured by               ) 

- To create balance in matched sample 
 
- Inverse probability of treatment weighting (IPTW): reweighting  treated 

and control sample to create balance 
 

- Weights:              for treated and                  for control  
 
- Poor overlap ->           close to 0 or 1 -> extreme weights –>  bias, 

inefficiency for IPTW (weight truncation) 
 

- IPTW more sensitive to misspecification than matching (Waernbaum, 
2011) 

  , 
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Machine learning estimation of  
the propensity score 

- PS balancing score if correctly specified (Rosenbaum and Rubin, 1983) 
 
- Standard  in applied work: main terms logistic regression 

– Untested assumptions:  linearity in the log odds, no interactions, higher order 
terms 

 

- Alternatives: regression trees, neural networks (Westreich et al., 2010) 
 
- Boosted classification and regression trees (CARTs)  (Lee et al., 2010) 

– Uses generalised boosted (logistic) regression 
– Demonstrated to protect against extreme PS weights -> bias reduction, efficiency 

improvement 
– Selects PS to maximise balance 
– Software: R package “twang”   http://cran.r-project.org/web/packages/twang/index.html 
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Double-robust methods 

- Combine                      and   
- DR property: consistent if either                  or                  is correctly specified 

(Robins et al., 1994) 
 

- Common implementations: weighted regression, augmented IPTW  
 

– When PS extreme, DR methods can perform worse than OLS 
regression (Kang and Schafer, 2007) 

– Debate, new methods proposed (Robins et al., 2007; Tan 2010; Porter 
et al., 2010; Robins et al., 2012) 

 
- Boundedness  is a desirable property:                    always lies within the range 
                                                              of the possible values of the endpoint 
 
- Targeted maximum likelihood estimation (TMLE)  
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Targeted maximum likelihood estimation 
Van der Laan and Rubin, 2006 
 

 
- Traditional ML: aims to maximise  the likelihood function for the whole 

distribution of the data 

 

- TMLE: designed to reduce bias in the parameter of interest (e.g. ATE), by 
“targeting” an initial estimate of the endpoint regression function 

 

- Solves the efficient influence curve estimating equation  

- double-robust. 

- semi-parametric efficient if both  the initial                  , and  

      are correctly specified 
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Targeted maximum likelihood estimation 
Van der Laan and Rubin, 2006 

2 stage estimator: 
 

1. Obtain initial estimate of  
 
2. Update (fluctuate) initial estimate, using information from the 

treatment assignment mechanism  
 
 

 - fluctuation on the logistic scale (continuous endpoints rescaled   between  

                    0 and 1), to ensure boundedness ( Gruber and van der Laan, 2010) 

      
     - for the ATE,                         
 
- Estimator for the ATE 
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Targeted maximum likelihood estimation 

m <- glm(Y ~ A + W1*W3 + W2) 

Q <- cbind(QAW = predict(m), 

    Q1W = predict(m, newdata = data.frame(A = 1, W1, W2, W3)), 

    Q0W = predict(m, newdata = data.frame(A = 0, W1, W2, W3))) 

 

g <- glm(A ~ W1 + W2, family = binomial) 

g1W <- predict(g, type = "response") 

h <- cbind(A/g1W - (1-A)/(1-g1W), 1/g1W, -1/(1-g1W)) 

epsilon <- coef(glm(Y ~-1 + h[,1] + offset(Q[,"QAW"]))) 

Qstar <- Q + epsilon*h 

psi <- mean(Qstar[,"Q1W"] - Qstar[,"Q0W"])  

 

(Further R code available in Gruber and van der Laan, 2012)              

 
-      Demonstrated to outperform other DR methods, when there is poor overlap 

(Porter et al. 2011) 
- Recommended to be applied with machine learning estimation for Q(.) and g(.), to 

reduce bias due to misspecification  
- Software implementation: R package “TMLE“ (Gruber and van der Laan, 2012) 

 
       http://cran.r-project.org/web/packages/tmle/index.html 
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Bias-corrected matching 
(Abadie and Imbens, 2010) 

- Reminder: matching estimators impute missing potential outcome 

- Idea: to “clean up” residual imbalances between treatment groups after 
matching  

- Subtract an estimate of the bias, from each individual-level estimate of 
treatment effect  

 

1. Obtain matched data  

2. Obtain regression predictions for the potential outcomes 

3. Construct missing counterfactual using 

– Observed values of the matches 

– Adjustment term 
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Bias-corrected matching 
(Abadie and Imbens, 2010) 

- Estimator: 
 

-     Double-robust properties suggested: “BCM estimators have the advantage of 
an additional layer of robustness, because matching ensures consistency for any 
given value of the smoothing parameters, without accurate approximations to either 
the regression function or the PS ”(AI,2010) 

 
- Implementations use OLS for adjustment: if non-linearities not severe, 

bias reduced (Busso et al., 2011) 
 
- Software implementation: “NNMATCH” package in Stata, implements BCM 

with OLS 
 
    ideas.repec.org/c/boc/bocode/s439701.html 
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Motivating case study 

- Effect of alternative types of hip replacement on patients’ post-operative quality of 
life (QoL) 

- EQ5D-3L 

 

- Interest for policy makers: clinical and  

      cost-effectiveness 

 

- PROMs: large observational dataset 

 

- Bounded endpoint with spike at 1 

  

- Regression modelling challenging 

      (Basu and Manca, 2010) 

 

- Causal question: QoL difference between patients with hybrid vs. uncemented hip 
replacement (male,  aged 65-74 (n = 3,583)) 23 



Methods in the case study 

Fixed parametric model Machine learning 

TMLE OLS +  logistic regression 
 
Two part model +  logistic 
regression 
 

Super learner  + boosted CARTs 

Bias-corrected PS 
matching 

OLS +  logistic regression 
 
Two part model +  logistic 
regression 
 

Super learner  + boosted CARTs 
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Also implemented: regression, IPTW, matching, weighted least squares ( both 
fixed parametric and machine learning methods) 



 
 

 

Case study: estimated PS 
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Simulation design 

Focus: to compare finite sample performance of TMLE and BCM for range of 
realistic scenarios, when using fixed parametric models and machine 
learning, under misspecification 

 

Hypotheses: 

- When overlap  good: reweighting methods (weighted regression, TMLE) 
outperform BCM  (more efficient, when correctly specified) 

 

- When overlap poor, BCM expected to outperform TMLE  (matching more 
robust, when misspecified) 

 

- Using appropriate machine learning methods is anticipated to reduce bias 
compared to using misspecified, fixed  parametric models 
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Simulation design 

Overlap Confounder-endpoint 

association 

Endpoint 

distribution 

DGP 1 Good Moderate Normal 

DGP 2 Good  Strong Normal 

DGP 3  Poor  Strong Normal 

DGP 4 Poor Strong Gamma 

DGP 5 Poor  Strong Semi-continuous 



Simulation design 

- Confounders W1-W8, correlated, binary and normal  
 

- PS : 
 

 
- Endpoint: 
       
DGP1-3 normal 
 
       
 DGP4  gamma 
 
 
 
 DGP5  Semi-continuous  
                 (mixture of beta  

                  distributed  1-Y` and 1) 
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Simulation design 

 
- Scenarios: 

– (a) g and Q correctly specified  
– (b) Q correct,  g misspecified 
– (c) Q misspecified,  g correct 
– (d) Both g and Q misspecified 

- (d1) Misspecified fixed, parametric models 
- (d2) Machine learning estimation 

 
- 1000 datasets of n = 1000 

 
- Measures of performance: relative bias, variance, root 

mean squared error (RMSE), 95% CI coverage 
 

Fixed,  
parametric 
models 
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Simulation design 
Distributions of true PS 
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Simulation results 
 
- DGP 1 – “Ideal scenario”: Normal endpoint, good overlap, 

moderate confounder-endpoint relationship 

 
- Scen (a) Close to zero bias 
- Scen (b) and (c) Double robustness for WLS, TMLE and 

BCM 
- Scen (d1)  Bias across methods similar, between 7%- 15% 
- Scen (d2)  Bias decreases to 1%-2% for WLS, TMLE and 

BCM 
 

- DGP 2 – Stronger confounding leads to bias of 30%-50% in (d),  
machine learning reduces it to 3%-10% 

 

32 



 
Simulation results, DGP 3 
Poor overlap, normal endpoint, Q and g misspecified 
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(d1) Fixed, parametric models 
 for Q and g 

(d2) Machine learning 
 for Q and g 



Simulation results, DGP 4 
Poor overlap, gamma-distributed endpoint, Q and g misspecified 
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(d1) Fixed, parametric models 
 for Q and g 

(d2) Machine learning 
 for Q and g 



Simulation results, DGP 5 
Poor overlap, semi-continuous endpoint, Q and g misspecified 
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(d2) Machine learning 
 for Q and g 

(d1) Fixed, parametric models 
 for Q and g 



Discussion 
- Combining information from the conditional distribution of the endpoint 

and the PS can reduce bias due to functional form misspecification, when 
machine learning approaches used 

- Bias-variance trade off between BCM and TMLE 

- BCM seems more robust in challenging settings of poor overlap and non-
normal endpoints 

- R code to implement BCM with machine learning part of this work, TMLE 
user friendly software available  

- Main limitation: no unmeasured confounders 

- Further research: 

-     Alternative machine learning methods for the PS 

-   Collaborative maximum likelihood estimation (van der Laan and Gruber, 2010) 

- Optimal choice of variables in the PS, improves TMLE for poor overlap 
36 
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