How to fit generalised linear mixed models and keep smiling!

Patty Solomon

School of Mathematical Sciences
University of Adelaide
http://www.maths.adelaide.edu.au/patty.solomon/
1 December 2017

Why am I fitting GLMMs?

To evaluate the performance of Australian and New Zealand intensive care units (ICUs)

ICU bedside area, The Queen Elizabeth Hospital SA

We took the 'best approach' to evaluating ICU performance

Courtesy of your very own Linda Sharples!

A hierarchical modelling framework for identifying unusual performance in health care providers

David I. Ohlssen, Linda D. Sharples and David J. Spiegelhalter
Medical Research Council Biostatistics Unit, Cambridge, UK

Key idea: identify unusual mortality performance in three stages of analysis.

Three-stages for evaluating ICU performance

Stage 1: Fit hierarchical logistic regression models to mortality and identify potentially unusual ICUs

Stage 2: estimate a null model for 'usual performance'
Stage 3: identify and visualise unusual ICUs.

Our approach is frequentist:

- Solomon et al BMC Medical Research Methodology 2014
- Kasza et al Statistics in Medicine 2013

The first complete picture of ICU mortality in Australia

Log-SMRs versus effective sample size for Australian \& NZ ICUs 2000-2010

I would avoid Queensland ICUs ...

QLD, Metropolitan

104

QLD, Private

We found seasonal differences in mortality for the first time

Annual and weekly cycles for respiratory patients

Things I learnt from this work ...

- Comprehensive risk adjustment at both patient and hospital levels important \Rightarrow need complex models.
- Accurate parameter estimates important \Rightarrow method of model fitting matters.
- Waiting for the models to converge was like watching grass grow
- took about as long
- and was about as exciting.
- Data owners ANZICS CORE threatened 'grievous data withdrawal' if the media reported the results.

The Australian and New Zealand Intensive Care Society (ANZICS) Adult Patient Database (APD)

- One of the largest bi-national databases in the world
- Has collected voluntary patient admissions since 1995
- Currently $>1.5 \mathrm{~m}$ admissions; 167 of 214 eligible ICUs participated to 2013
- Data collected on age, sex, diagnostic category, surgical status, ventilation status, hospital level, geographical locality, transfers, etc, patient severity score APACHE III
- APACHE $=$ Acute Physiology And Chronic Health Evaluation score (3rd revision): worst value in 24 hours post admission
- We use in-hospital mortality.
The database resembles a Swiss-cheese.

Snapshot of the ANZICS APD 2000 - 2010

Table 2 Characteristics of ANZICS APD study patients by year, 2000-2010

Hosp. admit year	\boldsymbol{n} (\%)	Hosp. mort. (\%)	ICU mort. (\%)	APIII mean (sd)	Age mean (sd)	Vent. (\%)	Transfer (\%)
2000	20,888 (4.0)	17.3	11.1	53.7 (30.9)	58.9 (19.3)	48.1	8.9
2001	26,353 (5.0)	15.8	10.1	52.6 (30.3)	59.6 (19.2)	44.0	9.6
2002	32,380 (6.2)	15.3	9.9	51.7 (29.7)	60.0 (18.9)	42.6	9.4
2003	37,082 (7.1)	14.4	9.2	51.5 (29.0)	60.4 (18.8)	41.0	9.1
2004	43,132 (8.2)	13.6	8.5	51.5 (28.4)	60.7 (18.6)	40.3	8.8
2005	49,093 (9.4)	12.9	8.2	50.9 (28.4)	60.6 (18.6)	40.1	8.8
2006	54,323 (10.4)	12.1	7.8	51.0 (28.2)	61.1 (18.8)	38.5	8.4
2007	57,187 (10.9)	12.0	7.8	51.0 (28.4)	61.0 (18.7)	37.6	8.5
2008	61,667 (11.8)	11.7	7.5	51.8 (28.7)	60.8 (18.8)	39.3	8.4
2009	67,015 (12.8)	11.3	7.3	51.8 (28.4)	60.8 (18.8)	39.3	8.4
2010	74,342 (14.2)	10.5	6.8	50.8 (27.6)	61.1 (18.8)	37.5	8.3

Mortality declined over the decade.

Data are hierarchical: Dataframe

ICU	patid	mortality	APACHEIII	variables
1	1	0	49	x_{11}
1	2	1	88	x_{12}
\vdots	\vdots	\vdots	\vdots	\vdots
1	n_{1}	0	59	$\mathrm{x}_{1 n_{1}}$
2	1	1	91	x_{21}
2	2	0	45	x_{22}
\vdots	\vdots	\vdots	\vdots	\vdots
2	n_{2}	0	94	$\mathrm{x}_{2 n_{2}}$
\vdots	\vdots	\vdots	\vdots	\vdots
m	1	1	49	$\mathrm{x}_{m 1}$
m	2	0	147	$\mathrm{x}_{m 2}$
\vdots	\vdots	\vdots	\vdots	\vdots
m	n_{m}	1	57	$\mathrm{x}_{m n_{m}}$

A random intercept and slope model for ICU mortality

$$
Y_{i j}= \begin{cases}1 & \text { if patient } j \text { in ICU } i \text { died in-hospital } \\ 0 & \text { alive at discharge }\end{cases}
$$

- ICU mean $\beta_{0}, U_{i 0} \sim N\left(0, \tau_{0}\right)$ ICU random effects.
- $x_{i j}$ is the patient's APACHE III score
- APIII slope $\beta_{1}, U_{i 1} \sim N\left(0, \tau_{1}\right)$ APIII random effects.
- Then

$$
Y_{i j} \mid\left(x_{i j}, U_{i}, \tau\right) \sim \operatorname{Bernoulli}\left(\pi_{i j}\right)
$$

- where

$$
\log \left(\frac{\pi_{i j}}{1-\pi_{i j}}\right)=\beta_{0}+U_{i 0}+x_{i j}\left(\beta_{1}+U_{i 1}\right)
$$

Similar to but not the same as, Zhang et al Stats in Med (2011)

More general models for ICU mortality

For explanatory variables $\boldsymbol{x}_{i j}$,

$$
Y_{i j} \mid\left(\boldsymbol{x}_{i j}, \boldsymbol{U}_{i}, \tau\right) \sim \operatorname{Bernoulli}\left(\pi_{i j}\right) \quad \text { Model A }
$$

For random structure with design vector $\boldsymbol{z}_{i j}$

$$
\begin{array}{ll}
\operatorname{logit}\left(\pi_{i j}\right)=\boldsymbol{x}_{i j}^{T} \beta+\boldsymbol{z}_{i j}^{T} U_{i} \quad & \text { Models B,C } \\
& +\quad U_{i t} \sim N\left(0, \tau_{2}\right)
\end{array}
$$

For our simple model,

$$
x_{i j}^{T}=\left(1, x_{i j}\right)=z_{i j}^{T}
$$

We began with R: results using glmer (Laplace)

Models A,B,C fitted to the ANZICS APD 2000-2010 522, 911 patients from 144 ICUs

	Fixed effects	Random effects	Levels	Completion	Time hours
A	67	int + APIII slope	2	Without error	8.5
B	67	A + ICU-years	3	Failed to converge †	17.8
C	133	B	3	Aborted by user	>177.0

${ }^{\dagger}$ produced poor estimates

Three key issues when fitting GLMMs

- Accurate parameter estimation
- Computing time
- Model selection

We want procedures that will provide accurate estimates of the parameters of interest in a timely manner.

Parameter estimation: the profiled likelihood

- Use maximum likelihood
- Need to marginalise over the $U_{i} \mathrm{~s}$
- Let $\theta=(\boldsymbol{\beta}, \tau)$ be the unknown parameter vector
- the profiled likelihood

$$
L_{p}(\boldsymbol{\theta} ; \boldsymbol{y})=\prod_{i=1}^{m} \int \prod_{j=1}^{n_{i}} \pi_{i j}^{y_{i j}}\left(1-\pi_{i j}\right)^{1-y_{i j}} \phi\left(\boldsymbol{u}_{i} ; \tau\right) d \boldsymbol{u}_{i}
$$

where

$$
\phi\left(\boldsymbol{u}_{i} ; \tau\right) \sim \operatorname{MVN}(0, \tau)
$$

Parameter estimation: two approaches

Let $\log L_{p}=\ell_{p}$. We want

$$
\hat{\theta}=\arg \max _{\theta} \ell_{p}
$$

1. Gold standard: approximate ℓ_{p} then maximise

- Adaptive Gaussian Hermite quadrature (aGHQ)

2. Linearisation of the model

- Laplace approximation
- This is the same as aGHQ when $Q=1$.

Parameter estimation, $\boldsymbol{\theta}$

We can write

$$
\begin{aligned}
\ell_{p}(\theta ; \boldsymbol{y}) & =a(\theta)+\sum_{i=1}^{m} \log \int g\left(\theta, \boldsymbol{u}_{i}\right) d \mathbf{u}_{i} \\
& \approx a(\theta)+\sum_{i=1}^{m} \log G_{i}^{(q)}(\theta) \\
& =a(\theta)+b^{(q)}(\theta)
\end{aligned}
$$

Then

- Estimate $b^{(q)}(\theta)$
- Optimise to obtain $\operatorname{argmax}_{\theta}$; then
- Iterate until a minimum change threshold is met.

Software (available at our institution) evaluated

Software/package	Routine/function
Stata	melogit, meqrlogit (xtmelogit)
SAS	NLMIXED, GLIMMIX
R/lme4	glmer
ADMB*	ADMB-RE
R/glmmADMB	glmmADMB
S-Plus	nlme
Matlab	fitglme
SPSS	GENLINMIXED

*Automatic Differentiation Model Builder project
http://www.admb-project.org

Fake data: random intercept and slope model

$$
Y_{i j} \mid\left(x_{i j}, U_{i}, \tau\right) \sim \operatorname{Bernoulli}\left(\pi_{i j}\right)
$$

$$
\operatorname{logit}\left(\pi_{i j}\right)=\beta_{0}+U_{i 0}+x_{i j}\left(\beta_{1}+U_{i 1}\right)
$$

$$
\text { for } i=1,2, \ldots, 500 \text { and } j=1,2, \ldots
$$

Assuming:

$$
\begin{gathered}
\text { - } \beta_{0}=\beta_{1}=1, x_{i j} \sim N(0,1) \\
\text { - } U_{i}=\left[\begin{array}{l}
U_{i 0} \\
U_{i 1}
\end{array}\right] \sim \mathcal{N}_{2}(\mathbf{0}, \tau) \\
\circ \tau=\left[\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right]
\end{gathered}
$$

1. Parameter accuracy

Results are presented as 'spine plots'

- 1,000 datasets were randomly generated
- 95% confidence interval for each dataset given a horizontal line
- Spine is true value which should be covered by 95\% of Cls
- Horizontal lines that do not cover the true value are black.

Estimate the Type I error, α.

Estimation of β_{1} using Laplace, $n_{i}=3$

$\beta_{1}=1$	glmer	glmmADMB	ADMB	GLIMMIX	meqrlogit	fitglme	GENLINMIXED
$\alpha\left(\hat{\beta}_{1}\right)$	0.182	0.102	0.102	0.102	0.102	0.254	1.000
$\hat{\hat{\beta}}_{1}$	0.982	0.985	0.985	0.985	0.985	0.985	0.454

Estimation of β_{1} using Laplace $n_{i}=3$

$\beta_{1}=1$	glmer	gImmADMB	ADMB	GLIMMIX	meqrlogit	fitgIme	GENLINMIXED
$\alpha\left(\hat{\beta}_{1}\right)$	0.182	0.102	0.102	0.102	0.102	0.254	1.000
$\hat{\widehat{\beta}}_{1}$	0.982	0.985	0.985	0.985	0.985	0.985	0.454

Estimation of β_{1} : PQL

| $\beta_{1}=1$ | glmer | glmmADMB | ADMB | GLIMMIX | meqrlogit | fitglme | GENLINMIXED |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha\left(\hat{\beta}_{1}\right)$ | 0.182 | 0.102 | 0.102 | 0.102 | 0.102 | 0.254 | 1.000 |
| $\hat{\hat{\beta}}_{1}$ | 0.982 | 0.985 | 0.985 | 0.985 | 0.985 | 0.985 | 0.454 |

Estimation of β_{1} using aGHQ $=7, n_{i}=3$

$\beta_{1}=1$	ADMB	GLIMMIX	NLMIXED	meqrogit
$\alpha\left(\hat{\beta}_{1}\right)$	0.056	0.055	0.060	0.054
$\hat{\widehat{\beta}}_{1}$	0.998	0.998	0.968	0.998

Fixed effects in GLIMMIX using Laplace: increasing n_{i}

$\beta_{0}=1$	$n_{i}=5$	$n_{i}=10$	$n_{i}=25$
$\alpha\left(\hat{\beta}_{0}\right)$	0.078	0.065	0.050
$\hat{\hat{\beta}}_{0}$	1.010	1.010	0.999

Variance components in GLIMMIX \& Laplace: increasing n_{i}

$\tau_{0}=4$	$n_{i}=5$	$n_{i}=10$	$n_{i}=25$
$\alpha\left(\hat{\tau}_{0}\right)$	0.324	0.165	0.098
$\overline{\hat{\tau}}_{0}$	3.362	3.699	3.864

Variance components in GLIMMIX and $Q=7$: increasing n_{i}

$\tau_{0}=4$	$n_{i}=5$	$n_{i}=10$	$n_{i}=25$
$\alpha\left(\hat{\tau}_{0}\right)$	0.053	0.048	0.061
$\overline{\hat{\tau}}_{0}$	3.979	4.003	3.992

Variance components in Stata: increasing $Q, n_{i}=3$

$\sqrt{\tau_{1}}=2$	$Q=1$	$Q=2$	$Q=3$	$Q=4$	$Q=5$	$Q=6$	$Q=7$
$\alpha\left(\sqrt{\hat{\tau}_{1}}\right)$	0.373	0.954	0.204	0.035	0.037	0.040	0.033
$\sqrt{\hat{\tau}_{1}}$	1.671	1.456	1.757	1.949	1.927	2.033	1.990

Illustration: behaviour of $Q=1$

Illustration: behaviour of $Q=2$

ρ estimates in Stata, $n_{i}=3$

$\rho=0.25$	$Q=1$	$Q=2$	$Q=3$	$Q=4$	$Q=5$	$Q=6$	$Q=7$
$\alpha(\hat{\rho})$	0.139	0.028	0.028	0.049	0.036	0.046	0.043
$\hat{\rho}$	0.377	0.248	0.243	0.248	0.259	0.251	0.258

Simulation: bivariate normal with $\rho=0.25$

Simulation: skew-normal random effects

GLIMMIX Laplace and $Q=7$ for τ_{0}, skew-normal

$\tau_{0}=4$	$n_{i}=5$	$n_{i}=20$	$n_{i}=5$	$n_{i}=20$
$\alpha\left(\hat{\tau}_{0}\right)$	0.914	0.897	0.571	0.783
$\overline{\hat{T}}_{0}$	2.502	3.084	3.044	3.199

2. Computing time in minutes

Extended random intercept and slope model, fake data:

for
$\beta_{0}=\beta_{1}=1, \beta_{2}=\ldots=\beta_{21}=0, x_{k i j} \sim N(0,1)$, and
$i=1,2, \ldots, 200, j=1,2, \ldots, n_{i}$.

Computing time in minutes

Mac Pro (2010): $2 \times 2.93 G H z 6$-Core Intel Xeon, 32GB DDR3, SSD

Method	Software	$n_{i}=10$	$n_{i}=100$	$n_{i}=1000$
Laplace	melogit	1^{\times}	1	3
	meqrlogit	2	5	32
	GLIMMIX †	0	0	3
	NLMIXED $^{\dagger \dagger}$	2	21	187
	ADMB-RE	2	14	$\geq 4320^{\times}$
	glmer	2	3	16
	fitglme	0	1	17

\times Required change to default convergence tolerance, otherwise repeated optimisation until maximum iterations
\dagger Run on a virtual machine and not called from command line
$\dagger \dagger$ Required starting values that were chosen at random
\times No result produced (reasons currently unknown)

Computing time in minutes

Method	Software	$n_{i}=10$	$n_{i}=100$	$n_{i}=1000$
$\operatorname{aGHQ}(Q=7)$	melogit	0	0	342^{\times}
	meqrlogit	6	12	90
	GLIMMIX †	0	1	17
	NLMIXED $^{\dagger \dagger}$	18	203	4299
	ADMB-RE	2	17	$\geq 4320^{\times}$

\times Gradient/convergence error
\times No result produced (reasons currently unknown)

Putting it all together: Models for ANZICS APD

Model fitting computing times (hours)

Software	Routine	Estimation	Model A	Model B	Model C
R	glmer	Laplace	8.5	17.8	>177
SAS	GLIMMIX	Laplace	1.9	4.1	$\dagger \dagger$
		aGHQ $(\mathrm{Q}=7)$	3.8	$\dagger \dagger \dagger$	$\dagger \dagger \dagger$
Stata	melogit	Laplace*	$\mathbf{2 . 7}$	$>\mathbf{2 4}$	$>\mathbf{7 2}$
		aGHQ $(\mathrm{Q}=3)$	0.09	0.19	0.32
		aGHQ $(\mathrm{Q}=5)$	0.13	0.65	1.32
		aGHQ $(\mathrm{Q}=7)$	0.18	$>\mathbf{1 4 4} 4^{* *}$	>216

${ }^{\dagger \dagger}$ Unable to fit because "obtaining MVQU estimates as starting values for the covariance parameters failed"
${ }^{\dagger \dagger}$ Unable to fit because "insufficient resources to perform adaptive quadrature with 7 quadrature points"

* Not recommended
** Memory loss 32GB - aborted on iteration 3

Some Don'ts and Dos

- Never use SPSS for glmms
- Don't use
- aGHQ with $Q=2$
- glmer for models with more than a random intercept
- intmethod (laplace) in Stata
- Laplace for estimating variance components.
On a more positive note . . . do use
- aGHQ with $Q=7$: gives reasonably accurate estimates
- GLIMMIX in SAS: fastest for aGHQ using simple models
- melogit in Stata for more complex models: $Q<7$?
- Laplace for model selection with AIC.

Acknowledgements

Thank you to Dr Ty Stanford, now sadly (for me) working in the private sector.

Much of the computation was made feasible using the command line parallel computing utility: GNU Parallel. Please see http://www.gnu.org/s/parallel or the ;login: The USENIX Magazine article (O. Tange; 2011) for more details.

