Alternatives to Net and Relative Survival for Comparison of Survival between Populations

Peter Sasieni & Adam Brentnall Wolfson Institute of Preventive Medicine Queen Mary University of London

Problem

- To describe the survival in patients diagnosed with cancer reflecting only the mortality in excess of what they would have experienced in any case
- Two approaches
 - Cause-specific survival (death from cancer)
 - Problem 1: non-independence of causes of death
 - Problem 2: difficulty determining cause of death
 - Adjust for expected mortality

Why not simply use overall survival?

- Survival in patients diagnosed aged 75 plus will be much worse that in patients aged 55-74
 - Is that because elderly patients:
 - Aren't treated properly?
 - Have co-morbidities and are more frail?
 - Simply die more often from completely unrelated diseases?
- Survival of cancer patients diagnosed in 2000-2004 much better than in those diagnosed in 1970-1974
 - Better treatment, earlier diagnosis
 - Fewer dying from cardiovascular disease, infections, ...

How should one adjust survival using expected rates?

Method 1: Relative survival

 $S_r(t)=S_O(t)/S_E(t)$

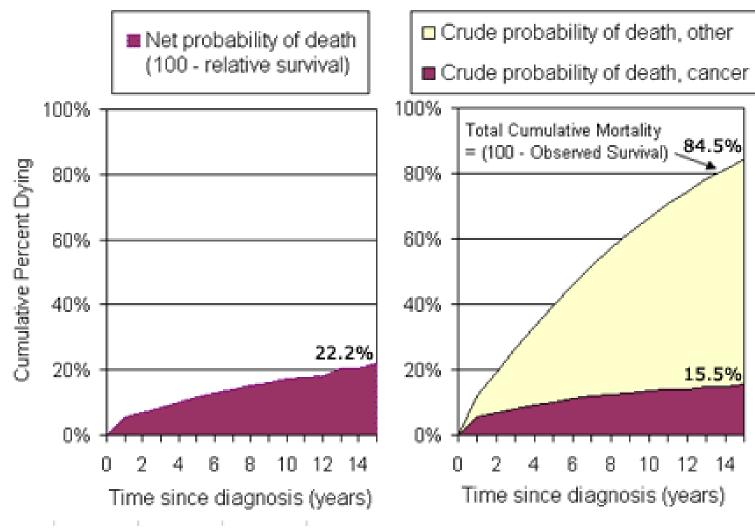
r=relative

O=Observed

E=Expected

Example: Relative and cause-specific fatality

Cumulative Probability of Death in Men and Women Age 70+ Diagnosed with Localized Colorectal Cancer, 1985-2001, SEER 9 Registries



What is net survival?

1. Cause-specific survival

The survival that would be observed if the patients were only subject to the mortality from the disease of interest

If T & U competing survival times:

net-hazard

 $\lambda(t) = \lim P\{t \le T < t + \Delta | T \ge t\} / \Delta$

crude-hazard

```
\lambda^{\#}(t) = \lim P\{t \le T < t + \Delta \mid T \ge t, U \ge t\} / \Delta
```

Would like net-hazard but can only estimate crudehazard

What is net survival?

1. Cause-specific survival

2. Relative survival

The survival that would be observed if the patients were not subject to the mortality in the background population

Excess hazards

 Excess hazard is the difference between the observed and the expected hazard

 $\lambda_{e}(t) = \lambda_{O}(t) - \lambda_{E}(t)$

• Note that the excess hazard is the logarithmic derivative of the relative survival:

$$S_r(t)=S_O(t)/S_E(t)$$

where

$$\begin{split} \lambda_{O}(t) = -d \ln\{S_{O}(t)\}/dt; & \lambda_{E}(t) = -d \ln\{S_{E}(t)\}/dt; \\ \text{and hence } \lambda_{e}(t) = -d \ln\{S_{O}(t)/S_{E}(t)\}/dt \end{split}$$

So....

• The excess hazard corresponds to the relative survival

Classical solution

- Ederer-II (Ederer 1959, 1961)
 - Estimate the relative survival:

 $S_r(t)=S_O(t)/S_E(t)$

where $S_0(t)$ is the observed (Kaplan-Meier) survival function, and

d ln{S_E(t)}/dt = $-\sum_{i=1}^{n} Y_i(t)\lambda_{Ei}(t) / \sum_{i=1}^{n} Y_i(t)$

where $Y_i(t)$ indicates whether or not the i'th individual is at risk at time t

• It uses the expected hazard for the i'th individual only whilst that individual is at risk

For homogeneous data...

Net survival and relative survival are the same

But for heterogeneous data ...

• The mean relative survival:

(1/n) $\sum_{i=1}^{n} S_{ri}(t)$

is **not** the same as

• The relative (mean) survival:

$$\sum_{i=1}^{n} S_{Oi}(t) / \sum_{i=1}^{n} S_{Ei}(t)$$

• It is the mean relative survival that corresponds to the marginal net survival

What happens with heterogeneous data?

- For the i'th individual we have ${\sf S}_{\sf ri}(t)$ corresponding to $\lambda_{\sf ei}(t)$
- But how should we combine these to obtain an overall measure?
 - If the i'th individual dies at T_i should we still try to estimate S_{ri}(t) or λ_{ei} (t) beyond T_i?
 - If we don't then the overall estimate will depend on the expected mortality

Traditional approach to heterogeneity

- Stratify
 - Assume homogeneous within strata
 - Take a weighted average of the estimates within each strata
 - Note: traditionally the stratum-specific weights were fixed, but Brenner & Hakulinen (2003) allowed time-dependent weights

Problems with stratification

- If strata too broad then not homogeneous
- If strata too narrow then unable to estimate (for large t) because no one still at risk in stratum

Recent quotations

- "In estimating net survival, cancer registries should abandon all classical methods"
- "Due to inherent biases, most of the statistical methods used to estimate net survival are quite inaccurate."

But ...

- If the excess hazard is homogenous within strata then the stratified Ederer-II estimator is consistent
 - The classical approaches are not so bad so long as one stratifies

How can we estimate the marginal net survival?

- Horvitz–Thompson / inverse probability weighting
 - Divide the indicator of "at-risk", $Y_i(t)$, by $EY_i(t) = S_{Ei}(t)$
 - Pohar-Perme
 - Must use the same weights to estimate the "observed" hazard as well as the expected hazard
 - Yields a consistent estimators of the excess hazard and hence of the (marginal) net survival

Roche (2012) on Pohar-Perme

- "In estimating net survival, cancer registries should abandon all classical methods and adopt the new Pohar-Perme estimator."
- "Due to inherent biases, most of the statistical methods used to estimate net survival are quite inaccurate."
- "We see no reason to favour any classically used method ... because, unlike the PPE, they are all biased"

Dickman (2013) on Roche

- "The approach used by Roche et al. to calculate the `bias with the classical methods' is fundamentally flawed."
- "Researchers should also be aware that the lack of bias in the PP estimator comes at a price of higher variance."

Also note:

- If the stratification is so fine that within strata the expected survival is homogenous, S_E(.|Z)=S_E(.), then
 - The stratified Pohar-Perme estimator is identical to the stratified Ederer-II estimator

Take a step back: What are we trying to do?

What are we trying to do?

- Compare the survival corresponding to the excess hazard in cancer patients in different populations
- Estimate the relative survival when it is the same as the net survival

Measures of net survival

- S_E(.|z) is the expected survival conditional on covariates
- H is the distribution of Z
- Define $S_r(.|z)=S_O(.|z)/S_E(.|z)$
- Functionals of S_r , S_E , H
 - R(S_r,S_E,H)(t)

Requirements of R(S_r,S_E,H)

- 1. It **estimates** the net survival when the net survival is homogeneous. If $S_r(.|z) = S_r(.)$ then $R(S_r, S_E, H)(t) = S_r(t)$
- 2. It is **invariant** under changes of the expected survival and the covariate distribution $R(S_r, S_E, H) = R(S_r, S_{E^*}, H^*)$
- **3. Ordering**: If $S_r(.|z) < S_{r^*}(.|z)$ for all z, then $R(S_r, S_E, H)(.) < R(S_{r^*}, S_E, H)(.)$

Desirable properties

- Robustness
- **Precision** (efficient estimators will have small variance)

Families of measures

 Ratio of weighted average observed to weighted average expected survival

 $E_{H}\{w(t,Z)S_{O}(t \mid Z)\}/E_{H}\{w(t,Z)S_{E}(t \mid Z)\}$

• In order for the measure to depend on S_0 only through S_r the weights must be proportional to $1/S_E$:

 $E_{H} \{v(t,Z)S_{O}(t|Z)/S_{E}(t|Z)\}/E_{H} \{v(t,Z)\}$ = $E_{H} \{v(t,Z)S_{r}(t|Z)\}/E_{H} \{v(t,Z)\}$

- Weighted mean of the relative survival
 - Note that v(t,z) must be proportional to h₀(z)/h(z) in order for the measure not to depend on H.

 E_{H_0} {v*(t,Z)S_r(t|Z)} where E_{H_0} {v*(t,Z)}=1

Families of measures

• Weighted mean of the relative survival

$$R_w^1 = \frac{E_H \{w(t,Z)S_r(t|Z) h_0(Z)/h(Z)\}}{E_H \{w(t,Z) h_0(Z)/h(Z)\}}$$

Families of measures (2nd family)

Weighted excess hazard

$$R_w^2 = exp\left\{-\int_0^t \frac{\mathsf{E}_{\mathsf{H}}\{\mathsf{w}(\mathsf{u},\mathsf{Z})\mathsf{h}_0(\mathsf{Z})/\mathsf{h}(\mathsf{Z}) \, \mathsf{d}\Lambda_e(\mathsf{u}|\mathsf{Z})\}}{\mathsf{E}_{\mathsf{H}}\{\mathsf{w}(\mathsf{u},\mathsf{Z}) \, \mathsf{h}_0(\mathsf{z})/\mathsf{h}(\mathsf{z})\}}\right\}$$

Or

$$R_{\nu}^{2} = exp\left\{-\int_{0}^{t} \frac{E_{H_{0}}\{v(u,Z)S_{r}(u|Z)d\Lambda_{e}(u|Z)\}}{E_{H_{0}}\{v(u,Z)S_{r}(u|Z)\}}\right\}$$

Two families of measures

• Weighted mean of the relative survival

$$R_{w}^{1}(t) = \frac{E_{H_{0}}\{w(t,Z)S_{r}(t|Z)\}}{E_{H_{0}}\{w(t,Z)\}}$$

• Weighted excess hazard

$$R_w^2(t) = exp\left\{\int_0^t \frac{E_{H_0}\{w(u,Z)S_r(u|Z)d\Lambda_e(u|Z)\}}{E_{H_0}\{w(u,Z)S_r(u|Z)\}}\right\}$$

• NB The weights are not a function of S_r, S_P or H

Estimators

$$Q_{v}^{2} = exp\left\{-\int_{0}^{t} \frac{\sum v_{i}(u)h_{0}(z_{i})/h_{n}(z_{i})Y_{i}(u)/S_{Ei}(u)\{dNi(u)-d\Lambda_{Ei}(u)\}}{\sum v_{i}(u)h_{0}(z_{i})/hn(z_{i})Yi(u)/SEi(u)}\right\}$$

Here: h_n is the "empirical density" $N_i(t)$ is the counting process (of death)

With: v=1 and $h_0/h_n=1$ we have the Pohar-Perme estimator

Note: h_0/h_n standardises inside the exponential

Estimators

$$Q_{v}^{2} = exp\left\{-\int_{0}^{t} \frac{\sum v_{i}(u)h_{0}(z_{i})/h_{n}(z_{i})Y_{i}(u)/S_{Ei}(u)\{dNi(u)-d\Lambda_{Ei}(u)\}}{\sum v_{i}(u)h_{0}(z_{i})/hn(z_{i})Yi(u)/SEi(u)}\right\}$$

With: $v_i(u)=S_{Pi}(u)$ and $h_0/h_n=1$ we have the Ederer-II estimator

Estimators

$$Q_{v}^{2} = exp\left\{-\int_{0}^{t} \frac{\sum v_{i}(u)h_{0}(z_{i})/h_{n}(z_{i})Y_{i}(u)/S_{Ei}(u)\{dNi(u)-d\Lambda_{Ei}(u)\}}{\sum v_{i}(u)h_{0}(z_{i})/hn(z_{i})Yi(u)/SEi(u)}\right\}$$

When S_E=1 (no competing risk):

- Both Ederer-II and Pohar-Perme give the Kaplan-Meier estimator, while Q_{ν}^2 is a stratum weighted Kaplan-Meier estimator

Variance of In(Q)

$$\int_{0}^{t} \frac{J(u) \sum_{i=1}^{n} \{v_{i}(u)(h_{0}/hn)(z_{i})/SEi(u)\}^{2} dN_{i}(u)}{\{\sum_{i=1}^{n} v_{i}(u)(h_{0}/hn)(z_{i})/SEi(u)\}^{2}}$$

Where J(u) is an indicator of at least one individual at risk at u.

In order to control the variance we want to counter balance the $1/S_{Ei}$ term which could cause the variance to "blow up" when S_{Ei} is very small (for some i)

Set $v_i(u)=S_{0i}(u)$ using a "standard" survival function

$v_i(u)=S_{0i}(u)$: Choice of S_0

- S-zero (not S-Oh)
- If $S_0 = S_E$ (and $h_0 = h$) then have Ederer-II
- Want S_0 to be the minimum of S_E (or even S_0) in each of the populations being compared
- Also for robustness want S₀(t|z) to be zero for values of t for which S_E(t|z) can be very small for some z in one of the populations of interest
- But for precision do not want S₀(t|z) to be zero unnecessarily

What does $Q_{S_0}^2$ estimate?

 The ratio of observed to expected survival that would be observed in a standard population in which the covariate distribution at diagnosis matched the standard covariate distribution and the expected mortality matched the standard mortality

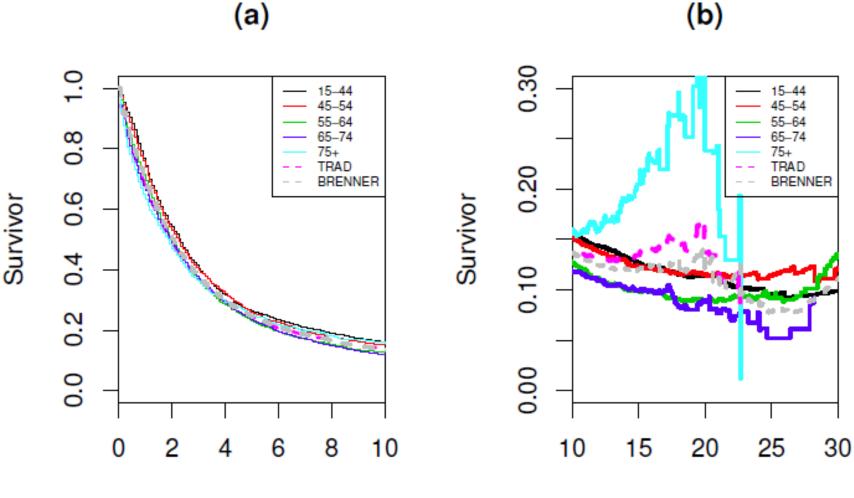
An estimator for R¹

$$\frac{\sum_{i=1}^{n} \{(\mathsf{S}_{0i}/\mathsf{SEi})(\mathsf{t}))(\mathsf{h}_{0}/\mathsf{hn})(z_{i})\} \mathsf{Y}_{\mathsf{i}}(t)}{\widehat{S(t)} \sum_{i=1}^{n} \{\mathsf{S}_{0i}(\mathsf{t}))(\mathsf{h}_{0}/\mathsf{hn})(z_{i})\}}$$

Here $\widehat{S(t)}$ is the Kaplan-Meier estimator of the censoring distribution

Note: $EY=S_0$ so Y_i/S_E is an "estimate" of the i'th relative survival. Hence this estimator can be viewed as a (very finely) stratified estimator (with stratification weights that are time-dependent)

EXAMPLE: SURVIVAL FROM BREAST CANCER WITH DIST. METS, USA 1973-2010 (n = 16, 597)

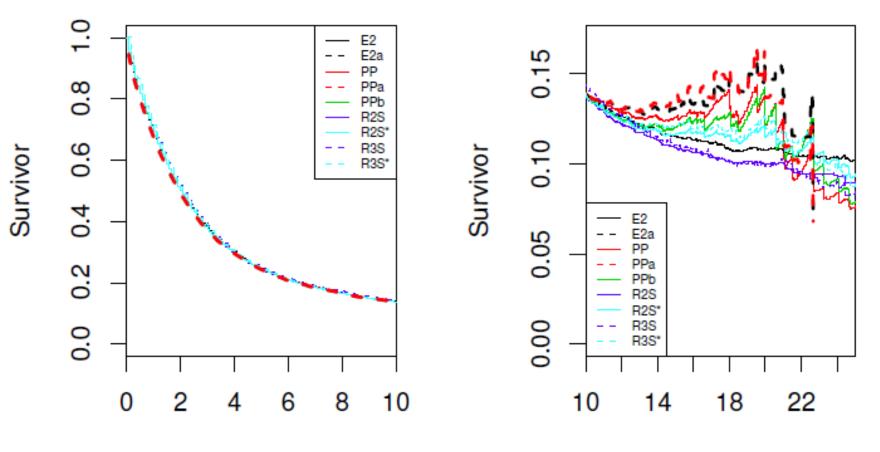


Time (years)

Time (years)

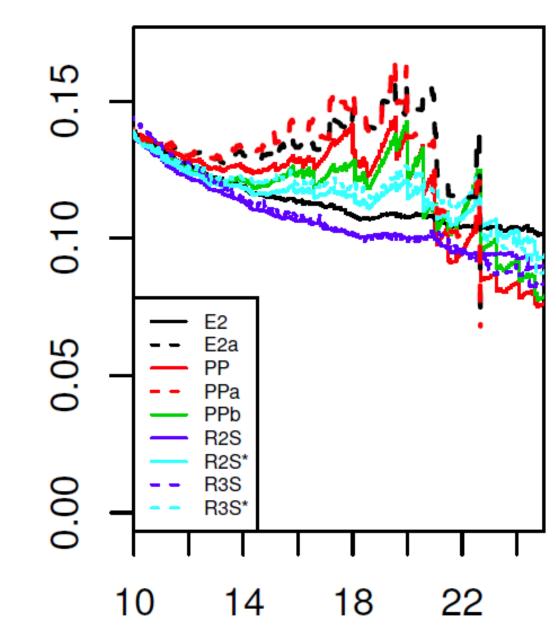
EXAMPLE: SURVIVAL FROM BREAST CANCER WITH DIST. METS, USA 1973-2010 (n = 16, 597)

(b)



Time (years)

Time (years)

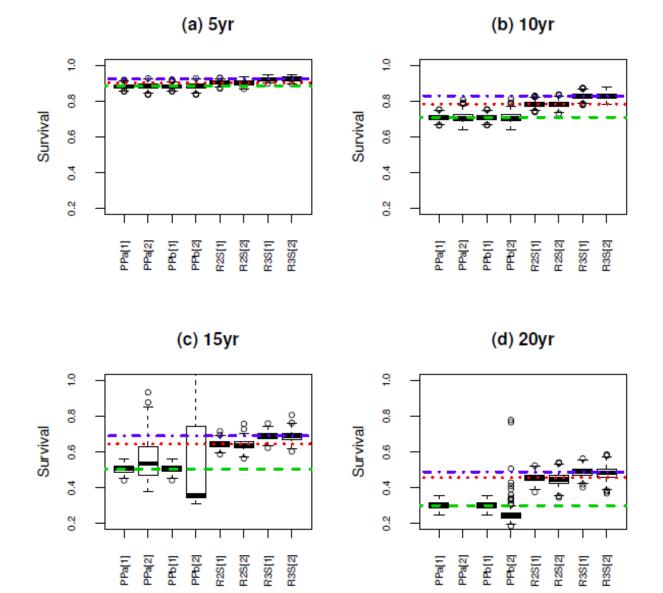


SIMULATION: SETUP (n = 2,000)

Population	Mortality rate aged 65-69	Mortality rate aged 70-85	Mortality rate aged 86+	Percent in Group 1
1: women USA 1980	Ref	Ref	Ref	60%
2: higher mortality	x1.2	x2.0	x4.0	70%
Standard population	x2.0	x4.0	x100.0	50%

- Two groups in population
 - 1 Aged 65 at diagnosis
 - 2 Aged 75 at diagnosis
- Same excess hazard all populations (3% per year)
- No censoring considered here (does not change findings)

SIMULATION RESULTS



RESULTS

Measure	Рор	Mean bias (%)	SD (×100)	Var(<i>Â</i>)/ <i>R</i> ² (×10000)		Mean bias (%)	SD (×100)	Var(<i>Â</i>)/ <i>R</i> ² (×10000)
(a) 5-yr					(c) 15-yr			
net-strata	1	-0.1	1.2	1.7		0.0	1.9	13.9
net-brenner	1	-0.1	1.2	1.7		0.1	1.9	13.8
std-r2	1	0.0	1.0	1.2		0.0	1.9	8.9
std-r3	1	0.0	0.9	1.0		0.1	2.1	9.3
net-strata	2	-0.3	1.6	3.3		****	****	****
net-brenner	2	-0.2	1.6	3.3		-0.8	25.4	2549.9
std-r2	2	-0.1	1.2	1.8		-0.7	2.7	17.4
std-r3	2	-0.1	1.0	1.1		-0.3	2.9	18.0
(b) 10-yr					(d) 20-yr			
net-strata	1	-0.2	1.6	5.1		0.6	2.2	51.8
net-brenner	1	-0.1	1.6	5.1		1.0	2.2	52.8
std-r2	1	-0.1	1.5	3.9		-0.2	2.4	28.6
std-r3	1	0.0	1.7	4.0		0.1	2.6	28.6
net-strata	2	-0.8	2.8	15.5		****	****	****
net-brenner	2	-0.5	2.8	15.4		7.3	130.1	188389.5
std-r2	2	-0.3	1.7	4.8		-1.4	3.9	71.7
std-r3	2	-0.2	1.7	4.4		-0.6	4.1	70.9