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Overview

 Introduction to factor mixture models

« How are they being used in mental health research?
My research application

 Difficulties with interpreting factor mixture models

e Trying to understand my results

* Lies, damned lies and latent classes?



Extension of latent class analysis

 Factor mixture models = extension of LCA

« Cornerstone of LCA is the assumption of conditional
iIndependence

— Conditional on class membership, all variables should be
uncorrelated

— Observed correlations in the sample should be entirely accounted
for by the latent classes

e This rules out severity variation within a class

— e.g. mild and severe depression severity
— Additional ‘severity classes’ needed to account for correlations



Factor mixture models

« Factor mixture models relax the assumption of conditional

iIndependence within latent classes
— Allow for severity variations within a class

 |Include one or more factors to model correlation structure

for the variables in each class

« Specification similar to multi-group factor analysis in Mplus

Combines LCA and CFA/IRT modelling

Grouping variable unmeasured = latent classes

Specify a factor model within each class

Can constrain intercepts and factor loadings to be equal
Many different specifications possible



FMMs popular for mental health research

 Identifying disorder subtypes

« Exploring diagnostic boundaries (my focus)

— e.g. anxiety and depressive disorders
— One multi-faceted distress disorder or several distinct disorders?

* Resolving the ‘continuity controversy’
— Do symptoms vary along continuum with normal functioning?
— Or do we have a distinct disorder category with objective
boundaries? — a ‘taxon’
(may still be severity variation within a taxon)

— Seen as important for research into causes and treatments



Can we identify the ‘true’ latent structure?

o Simulation studies suggest it may be possible
(Lubke and Neale, 2006)

— Generated data to fit FA, FMM and LC models
(continuous items)
— Datasets all analysed by each model structure
— AIC & saBIC usually allowed correct structure to be identified

» Less clear for ordinal data (Lubke and Neale, 2008)

— BIC best for identifying correct structure
— Fit indices tended to favour models with too few classes
(many category intercepts needed per extra class)



Example — Autism Spectrum Disorder

“Validation of Proposed DSM-5 Ciriteria for Autism Spectrum
Disorder” (Frazier et al., 2012)

Children with diagnosed ASD and undiagnosed siblings
Compared LCA, EFA and FMMs
Chose FMM with 2 classes and 2 dimensions

e Authors’ conclusions:
— Validates DSM-5 proposal for categorical ASD diagnosis with 2
dimensions within it

— “The presence of an ASD versus non-ASD distinction coheres with
data identifying a divergent trajectory of brain development in ASD.”




Example 2 — Health anxiety

“Should health anxiety be carved at the joint?”
(Asmundson et al., 2012)

» Used large samples of undergraduate students

 Selected model: FMM with 2 classes
— ‘anxious’ and ‘nonanxious’

« Authors’ conclusion (from the abstract):

— “Contrary to current conceptualizations [...], the FMM results
iIndicate the latent structure of health anxiety to be taxonic rather

than continuous.”




My application of FMMs

« Aim: to investigate the latent structure of symptoms of
common mental disorders

« Data: 3 household surveys of psychiatric morbidity in UK
— repeated cross-sectional surveys
(1993, 2000, 2007)

 Combined dataset ~ 22,000 individuals aged 16-64

 Symptoms of CMD measured by standardised interview
— Community Interview Schedule (Revised) — CIS-R



Structure of CIS-R Interview

e 13 sections covering different symptom areas
— Ordinal score (0-4) for each symptom
— Based on symptoms from past 7 days only
— Symptoms not necessarily signs of illness

e Symptoms covered:

e Somatic symptoms  Worry

« Fatigue o Anxiety

« Concentration/forgetfulness  Phobias

o Sleep e Panic
 Irritability « Compulsions
« Worry about physical health * Obsessions
* Depression

* Unidimensional scale — severity of mental distress



Model comparison from CIS-R data: n=11,230

Pairs of variables with

Model #p BIC ‘poor fit’ (out of 78)
Factor 1f 65 182,531 35 Based on
bivariate
_ chi-squares
Factor mixture 1f 2c 119 182,015 8 in Tech10
Factor mixture 1f3c¢ 173 181,895 4
Latent class 4c 211 182,961 8

FMMs have same loadings in each class but different item intercepts




—SU0ISSasqO
(@)
Wo % W —suols|ndwo)
— NN O
7]
] d-olued
n
NT g
c © ©
M S % ~eigoyd
n Q23
D x O m
(7)) - QaIXuy
7P
©
(& —A11I0/N
™
— —uoissaidaQ
=
()
r_n.m —A1I0M UYljeaH
i
_ - AnigeL
©
O doo
@) — IS
(¢D) —6104/0U0D
S
D
ud
X L anbBne4
= T T T T —olflewos
O o © < o o
._n.U. o o o o
(C

LL Z =< 3l09s buiaey Jo Aljigegold




What do the latent classes mean?

* Do these three latent classes really represent distinct
clinical groups in the population?
— | need to be sure before making claims
— Class membership probs. — no obvious clinical interpretation

 FMMs allow for a severity dimension within class
— Can’t be simple severity classes

— If FMM fits better than factor model without classes, surely classes
must be real groups?

...not necessarily!



Two roles of latent classes

* Direct role: represent true groups
 Indirect role: approximating a continuous distribution

« Situations where a factor mixture model may appear to
describe data better in the absence of true groups

(Bauer and Curran, 2004)

* Non-normality of the factor(s)
» Miss-specification of measurement model
* Non-linearity (for logistic models: on logit scale)

« Must rule out alternatives to conclude real groups



Are classes just modelling non-normality?

 Standard factor model assumes

normally distributed factor € o.
— Inappropriate for mental health S . ’
— Classes accommodating this? é 7 ) ’
« Test: Fit ‘latent class factor S g
model 'g © — | [ I e
— Approximates continuous factor w 8 6 4 2 0 2

distribution with ‘located’ classes

. . . LCFA class factor scores
— ‘Non-parametric’ factor analysis

e Result: no improvement on fit of standard factor model
- 2 and 3 class FMMs still much better
- Suggests FMMs not just modelling non-normality



What about non-linearity?

» Factor model for ordinal data related to ordinal logistic
regression:

— Cumulative probability model (as in ‘ologit’ in Stata)

— Assumes linear relationship between probabilities of
responses to each variable and the factor on logit scale

— Assumes proportional odds for each ordered response
category (= equal slopes = parallel lines)
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Investigating nonlinearity

 Maybe the FMM is relaxing the linearity and proportional
odds assumptions

 How to investigate this for ordinal data?
— No straightforward way to assess true shape of relationship
— Used a whole suite of approaches
— All had some limitations, but fairly consistent picture

e Clearest to present:
— Lowess curves (descriptive: form of non-parametric regression)
— Used summed item scores to ‘represent’ factor scores



Probability of score or higher

Lowess curves

Describing cumulative probabillities, as in:

Fatigue Health worry
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Conclusions

« Factor mixture models appear to describe the CIS-R data
better than models without classes

 However, evidence of non-linearity (on logit scale) and
violations of proportional odds

o Careful examination suggests latent classes are
accommodating these violations
— Class allocations consistent with patterns of non-linearity
— Implies classes unlikely to represent real groups
— BUT can'’t prove this either way



Conclusions (continued)

* No clear evidence for any ‘disorder classes’

« BUT doesn’t prove that there are no discrete disorders
— ‘Signal’ drowned out by ‘noise’ from factor model misfit?

— May be impossible to distinguish dimensions from discrete
categories empirically

— Key discriminating characteristics not measured?
— Lack of power?

« My view: disappointingly ambiguous conclusions for a very
time-consuming exercise



Interpretation of FMMs in the literature

« Some papers mention alternative roles of classes
— Usually simulation studies or illustration papers
— Tend to avoid drawing substantive conclusions

e ‘Taxonicity’ of classes often unguestioned in applied
psychiatric research papers

— Papers frequently don’t mention that classes may reflect non-
normality or other factor model violations

— Authors may not be aware

 BUT model violations may be common in mental health
— Measures often designed as screening tools
— Items not selected for psychometric properties



Lies, damned lies and latent classes?

* These hybrid mixture models are very complex
— Huge effort required to develop real understanding
— Many readers will have to take findings ‘on trust’
— Reviewers may lack sufficient expertise to spot problems

 FMMs present severe risk of over-interpretation
— Not a magic bullet for identifying true latent structure
— Could lead to research blind alleys

 Researchers reporting FMMs must highlight and explore
alternative interpretations
— If not, we should be sceptical of any claims
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Three main families of factor mixture model

Measurement

invariance?
(intercepts/loadings)

Factor variance
within class?

Example

‘Semi-parametric Yes
factor model’ Yes
a.k.a. mixture factor model faCtOr*;
‘Latent class No I
factor model Yes
a.k.a. non-parametric factor factor@O' I
model ! 7 7 1 .
‘ : Yes
Factor mixture
, No / weak
model ..
factor*;




Mplus code: ‘Latent class factor model’ 1f 4c

IThis code is for ordinal data
Variable:

Categorical are ...;
Classes = c(4); ! num. classes

Analysis:
Estimator = MLR,;
Algorithm = Integration;
Type = Mixture;
Starts = 100 50;

Model:
%OVERALL%
factor BY somatic;
factor BY fatigue;
factor BY concforg;
factor BY sleep;

[ c#1*];
[ c#2%];
[ c#3%];

%C#1% !One section for each class
factor BY somatic@1;

factor BY fatigue* (1);

factor BY concforg* (2);

factor BY sleep* (3);

factor@0O; 'Fixed @O in all classes
[ factor@O ]; 'Fixed in 1 class only

[ somatic$1* ] (16);
[ somatic$2* ] (17);
[ somatic$3* ] (18);
[ somatic$4* ] (19);
[ fatigue$1* ] (20);
[ fatigue$2* ] (21);

[ fatigue$3*] (22);
[ fatigue$4+] (23);

%C#2%

factor BY somatic@1;
factor BY fatigue* (1);
factor BY concforg* (2);
factor BY sleep* (3);

factor@O;
[ factor* ]; !Free in other classes

[ somatic$1* ] (16);
[ somatic$2* | (17);
[ somatic$3* ] (18);
[ somatic$4* ] (19);
[ fatigue$1* ] (20);
[ fatigue$2* | (21);




Mplus code: a ‘Factor mixture model’ 1f 3c

IThis code is for ordinal data
Variable:

Categorical are ...;
Classes = c(3);

Analysis:
Estimator = MLR,;
Algorithm = Integration;
Type = Mixture;
Starts = 2000 500; 'Need lots

Model:
%OVERALL%
factor BY somatic;
factor BY fatigue;
factor BY concforg;
factor BY sleep;

[ c#1*];
[ c#2%];

%C#1% !One section for each class
factor BY somatic@1;

factor BY fatigue* (1);

factor BY concforg* (2);

factor BY sleep* (3);

factor* : IFree in all classes
[ factor@O ]; 'Fixed in all classes

[ somatic$l* | ; lintercepts can now
[ somatic$2* ] ; Idiffer between

[ somatic$3* ] ; Iclasses.

[ somatic$4* ] ;

[ fatigue$l*];

[ fatigue$2* ] ;

[ fatigue$3*] (22);
[ fatigue$4+] (23);

%C#2%

factor BY somatic@1;

factor BY fatigue* (1); 'Loadings
factor BY concforg* (2); !still
factor BY sleep* (3); 'equal.

factor* : IFree
[ factor@O ]; 'Fixed

[ somatic$l* ] ;
[ somatic$2* ] ;
[ somatic$3* ] ;
[ somatic$4* ] ;
[ fatigue$l* ] ;
[ fatigue$2* ] ;




Example code for lowess curves in R

## This code was written for ordinal data with five categories per item (coded as 0-4)
## Curves estimated separately — may cross inappropriately in regions where data are sparse

library(Hmisc) ## Package containing the plsmo() function
responses <- read.table("C:/Data/mplusexport.dat”, sep=",")

item <- 1 ## This number should be the column number of the item you wish to plot

score4 <- as.numeric(responses|,item]==4)

score3 <- as.numeric(responses|,item]==4|responses|,item]==3)

score2 <- as.numeric(responses|,item]==4|responses|,item]==3|responses|,item]==2)

scorel <- as.numeric(responses|,item]==4|responses|,item]==3|responses|,item]==2|
responses|,item]==1)

totscores <- rowSums(responses) ## Assumes there are no other variables in the dataset

restscores <- totscores - responses|,item]

plsmo(restscores, scorel, ylab="Probability of score or higher", xlab="Restscore",
ylim=c(0,1), trim=0, f=0.1) ## "f=0.1" controls the spikiness of the curve - it can range from 0 to 1.
plsmo(restscores, score2, trim=0, add=T, f=0.1)
plsmo(restscores, score3, trim=0, add=T, f=0.1)
plsmo(restscores, score4, trim=0, add=T, f=0.1)



