

Lies, damned lies and latent classes: Can factor mixture models allow us to identify the latent structure of common mental disorders?

Rachel McCrea Mental Health Sciences Unit, University College London rachel.mccrea.09@ucl.ac.uk

Overview

- Introduction to factor mixture models
- How are they being used in mental health research?
- My research application
- Difficulties with interpreting factor mixture models
- Trying to understand my results
- Lies, damned lies and latent classes?

Extension of latent class analysis

- Factor mixture models = extension of LCA
- Cornerstone of LCA is the assumption of <u>conditional</u> <u>independence</u>
 - Conditional on class membership, all variables should be uncorrelated
 - Observed correlations in the sample should be entirely accounted for by the latent classes
- This rules out severity variation within a class
 - e.g. mild and severe depression severity
 - Additional 'severity classes' needed to account for correlations

Factor mixture models

- Factor mixture models relax the assumption of conditional independence within latent classes
 - Allow for severity variations within a class
- Include one or more factors to model correlation structure for the variables in each class
 - Combines LCA and CFA/IRT modelling
- Specification similar to multi-group factor analysis in Mplus
 - Grouping variable unmeasured = latent classes
 - Specify a factor model within each class
 - Can constrain intercepts and factor loadings to be equal
 - Many different specifications possible

FMMs popular for mental health research

- Identifying disorder subtypes
- Exploring diagnostic boundaries (my focus)
 - e.g. anxiety and depressive disorders
 - One multi-faceted distress disorder or several distinct disorders?
- Resolving the 'continuity controversy'
 - Do symptoms vary along continuum with normal functioning?
 - Or do we have a distinct disorder category with <u>objective</u> boundaries? – a 'taxon'

(may still be severity variation within a taxon)

- Seen as important for research into causes and treatments

Can we identify the 'true' latent structure?

- Simulation studies suggest it may be possible (Lubke and Neale, 2006)
 - Generated data to fit FA, FMM and LC models (continuous items)
 - Datasets all analysed by each model structure
 - AIC & saBIC usually allowed correct structure to be identified
- Less clear for ordinal data (Lubke and Neale, 2008)
 - BIC best for identifying correct structure
 - Fit indices tended to favour models with too few classes
 (many category intercents needed per extra class

(many category intercepts needed per extra class)

Example – Autism Spectrum Disorder

"Validation of Proposed DSM-5 Criteria for Autism Spectrum Disorder" (Frazier et al., 2012)

- Children with diagnosed ASD and undiagnosed siblings
- Compared LCA, EFA and FMMs
- Chose FMM with 2 classes and 2 dimensions
- Authors' conclusions:
 - Validates DSM-5 proposal for categorical ASD diagnosis with 2 dimensions within it
 - "The presence of an <u>ASD versus non-ASD distinction</u> coheres with data identifying a divergent trajectory of brain development in ASD."

Example 2 – Health anxiety

"Should health anxiety be carved at the joint?" (Asmundson et al., 2012)

- Used large samples of undergraduate students
- Selected model: FMM with 2 classes
 - 'anxious' and 'nonanxious'
- Authors' conclusion (from the abstract):
 - "Contrary to current conceptualizations [...], the FMM results indicate the latent structure of health anxiety to be <u>taxonic rather</u> <u>than continuous</u>."

My application of FMMs

- Aim: to investigate the latent structure of symptoms of common mental disorders
- Data: 3 household surveys of psychiatric morbidity in UK
 repeated cross-sectional surveys

 (1993, 2000, 2007)
- Combined dataset ~ 22,000 individuals aged 16-64
- Symptoms of CMD measured by standardised interview
 - Community Interview Schedule (Revised) CIS-R

Structure of CIS-R interview

- 13 sections covering different symptom areas
 - Ordinal score (0-4) for each symptom
 - Based on symptoms from past 7 days only
 - Symptoms not necessarily signs of illness
- Symptoms covered:
 - Somatic symptoms
 - Fatigue
 - Concentration/forgetfulness
 - Sleep
 - Irritability
 - Worry about physical health
 - Depression

- Worry
- Anxiety
- Phobias
- Panic
- Compulsions
- Obsessions
- Unidimensional scale severity of mental distress

^aUCL

Model comparison from CIS-R data: n=11,230

Model	# p	BIC	Pairs of variables 'poor fit' (out of	with 78)
				N
Factor 1f	65	182,531	35	Based on
				bivariate
Factor mixture 1f 2c	119	182,015	8	in Tech10
Factor mixture 1f 3c	173	181,895	4	
Latent class 4c	211	182,961	8	

FMMs have same loadings in each class but different item intercepts

Factor mixture model – 1 factor, 3 classes

What do the latent classes mean?

- Do these three latent classes really represent distinct clinical groups in the population?
 - I need to be sure before making claims
 - Class membership probs. no obvious clinical interpretation
- FMMs allow for a severity dimension within class
 - Can't be simple severity classes
 - If FMM fits better than factor model without classes, surely classes must be real groups?

...not necessarily!

Two roles of latent classes

- Direct role: represent true groups
- Indirect role: approximating a continuous distribution
- Situations where a factor mixture model may appear to describe data better in the absence of true groups (Bauer and Curran, 2004)
 - Non-normality of the factor(s)
 - Miss-specification of measurement model
 - Non-linearity (for logistic models: on logit scale)
- Must rule out alternatives to conclude real groups

UCL

Are classes just modelling non-normality?

- Standard factor model assumes normally distributed factor
 - Inappropriate for mental health
 - Classes accommodating this?
- Test: Fit 'latent class factor model'
 - Approximates continuous factor distribution with 'located' classes
 - 'Non-parametric' factor analysis

• Result: no improvement on fit of standard factor model

- 2 and 3 class FMMs still much better
- Suggests FMMs not just modelling non-normality

What about non-linearity?

- Factor model for ordinal data related to ordinal logistic regression:
 - Cumulative probability model (as in 'ologit' in Stata)
 - Assumes <u>linear</u> relationship between probabilities of responses to each variable and the factor <u>on logit scale</u>
 - Assumes proportional odds for each ordered response category (= equal slopes = parallel lines)

DCL

Linearity and proportional odds assumptions

Investigating nonlinearity

- Maybe the FMM is relaxing the linearity and proportional odds assumptions
- How to investigate this for ordinal data?
 - No straightforward way to assess true shape of relationship
 - Used a whole suite of approaches
 - All had some limitations, but fairly consistent picture
- Clearest to present:
 - Lowess curves (descriptive: form of non-parametric regression)
 - Used summed item scores to 'represent' factor scores

Lowess curves

Describing cumulative probabilities, as in:

Total score excluding this symptom

Conclusions

- Factor mixture models appear to describe the CIS-R data better than models without classes
- However, evidence of non-linearity (on logit scale) and violations of proportional odds
- Careful examination suggests latent classes are accommodating these violations
 - Class allocations consistent with patterns of non-linearity
 - Implies classes unlikely to represent real groups
 - BUT can't prove this either way

Conclusions (continued)

- No clear evidence for any 'disorder classes'
- BUT doesn't prove that there are <u>no</u> discrete disorders
 - 'Signal' drowned out by 'noise' from factor model misfit?
 - May be impossible to distinguish dimensions from discrete categories empirically
 - Key discriminating characteristics not measured?
 - Lack of power?
- My view: disappointingly ambiguous conclusions for a <u>very</u> time-consuming exercise

Interpretation of FMMs in the literature

- Some papers mention alternative roles of classes
 - Usually simulation studies or illustration papers
 - Tend to avoid drawing substantive conclusions
- 'Taxonicity' of classes often unquestioned in applied psychiatric research papers
 - Papers frequently don't mention that classes may reflect nonnormality or other factor model violations
 - Authors may not be aware
- BUT model violations may be common in mental health
 - Measures often designed as screening tools
 - Items not selected for psychometric properties

Lies, damned lies and latent classes?

- These hybrid mixture models are very complex
 - Huge effort required to develop real understanding
 - Many readers will have to take findings 'on trust'
 - Reviewers may lack sufficient expertise to spot problems
- FMMs present <u>severe risk</u> of over-interpretation
 - Not a magic bullet for identifying true latent structure
 - Could lead to research blind alleys
- Researchers reporting FMMs <u>must</u> highlight and explore alternative interpretations
 - If not, we should be sceptical of any claims

References

- Asmundson, G.J.G. et al., 2012. Should health anxiety be carved at the joint? A look at the health anxiety construct using factor mixture modeling in a non-clinical sample. *Journal of Anxiety Disorders*, 26(1), pp.246–251.
- Bauer, D.J. & Curran, P.J., 2004. The integration of continuous and discrete latent variable models: Potential problems and promising opportunities. *Psychological Methods*, 9(1), pp.3-29.
- Frazier, T.W. et al., 2012. Validation of Proposed DSM-5 Criteria for Autism Spectrum Disorder. *Journal of the American Academy of Child & Adolescent Psychiatry*, 51(1), pp.28–40.e3.
- Lubke, G.H. & Neale, M.C., 2006. Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood? Multivariate Behavioral Research, 41(4), pp.499–532.
- Lubke, G.H. & Neale, M.C., 2008. Distinguishing between latent classes and continuous factors with categorical outcomes: Class invariance of parameters of factor mixture models. Multivariate Behavioral Research, 43(4), pp.592–620.

Three main families of factor mixture model

	Measurement invariance? (intercepts/loadings)	Factor variance within class?	Example
'Semi-parametric factor model' a.k.a. mixture factor model	Yes	Yes factor*;	
'Latent class factor model' a.k.a. non-parametric factor model	Yes	No factor@0;	
'Factor mixture model'	No / weak	Yes factor*;	

[±]UCL

Mplus code: 'Latent class factor model' 1f 4c

!This code is for ordinal data	[c#1*];	[fatigue\$3*] (22); [fatigue\$4*] (23);
·	[c#2], [c#3*];	
Categorical are;		N/ O //OP/
Classes = c(4); ! num. classes	%C#1% !One section for each class	%C#2%
	factor BY somatic@1;	factor BY fatigue* (1):
Analysis:	factor BY fatigue* (1);	factor BY conclore* (2):
Estimator = MLR;	factor BY concforg* (2);	factor BY sleep* (3):
Algorithm = Integration;	factor BY sleep* (3);	
Type = Mixture;		
Starts = 100 50;	factor@0; !Fixed @0 in all classes	factor@0;
	[factor@0]; !Fixed in 1 class only	[factor*]; !Free in other classes
Model:		
%OVERALL%	[somatic\$1*] (16);	[somatic\$1*] (16);
factor BY somatic;	[somatic\$2*] (17);	[somatic\$2*] (17);
factor BY fatigue;	[somatic\$3*] (18);	[somatic\$3*] (18);
factor BY concforg;	[somatic\$4*] (19);	[somatic\$4*] (19);
factor BY sleep;	[fatigue\$1*] (20);	[fatigue\$1*] (20);
	[fatigue\$2*](21);	[tatigue\$2*] (21);

Mplus code: a 'Factor mixture model' 1f 3c

!This code is for ordinal data Variable:	[c#1*]; [c#2*];	[fatigue\$3*] (22); [fatigue\$4*] (23);
 Categorical are; Classes = c(3);	%C#1% !One section for each class factor BY somatic@1; factor BX fatigue* (1);	 %C#2% factor BY somatic@1;
Analysis: Estimator = MLR; Algorithm = Integration; Type = Mixture;	factor BY concforg* (2); factor BY sleep* (3); 	factor BY fatigue* (1); !Loadings factor BY concforg* (2); !still factor BY sleep* (3); !equal.
Starts = 2000 500; !Need lots	factor* ; !Free in all classes [factor@0]; !Fixed in all classes	factor* ; !Free [factor@0]: !Fixed
Model:		
%OVERALL%	[somatic\$1*] ; !Intercepts can now	[somatic\$1*] ;
factor BY somatic;	[somatic\$2*] ; !differ between	[somatic\$2*] ;
factor BY fatigue;	[somatic\$3*] ; !classes.	[somatic\$3*] ;
factor BY concforg;	[somatic\$4*] ;	[somatic\$4*] ;
factor BY sleep;	[fatigue\$1*];	[fatigue\$1*];
	[fatigue\$2*] ;	[fatigue\$2*];

Example code for lowess curves in R

This code was written for ordinal data with five categories per item (coded as 0-4)
Curves estimated separately – may cross inappropriately in regions where data are sparse

library(Hmisc) ## Package containing the plsmo() function
responses <- read.table("C:/Data/mplusexport.dat", sep=",")</pre>

item <- 1 ## This number should be the column number of the item you wish to plot score4 <- as.numeric(responses[,item]==4) score3 <- as.numeric(responses[,item]==4|responses[,item]==3) score2 <- as.numeric(responses[,item]==4|responses[,item]==3|responses[,item]==2) score1 <- as.numeric(responses[,item]==4|responses[,item]==3|responses[,item]==2| responses[,item]==1) totscores <- rowSums(responses) ## Assumes there are no other variables in the dataset restscores <- totscores - responses[,item]</pre>

plsmo(restscores, score1, ylab="Probability of score or higher", xlab="Restscore",

ylim=c(0,1), trim=0, f=0.1) ## "f=0.1" controls the spikiness of the curve - it can range from 0 to 1. plsmo(restscores, score2, trim=0, add=T, f=0.1) plsmo(restscores, score3, trim=0, add=T, f=0.1) plsmo(restscores, score4, trim=0, add=T, f=0.1)