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Setting (1)

Consider a study in which patients are recruited (and given an
intervention) and then followed up until MI or death, or until the
study ends.

calendar time

Recruitment Study
end

MI censoringdeathintervention
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Setting (2)

Typically we would analyse such a study on the follow-up
timescale.

follow-up time

MI censoringdeathintervention
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Setting (3)

And often we look only at time to composite endpoint: MI or
death.

follow-up time

censoringintervention composite endpoint
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Setting (4)

Suppose some subjects withdraw before the end of the study.

follow-up time

censoringintervention composite endpoint withdrawal
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Setting (5)

Often we know nothing about what happens to these subjects
subsequently.

follow-up time

censoringintervention composite endpoint withdrawal
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Setting (6)

But in our setting, we DO have data on whether or not death
occurred before the end of the study, even for those who
withdrew — from a national death index.

follow-up time

MI censoringdeathintervention withdrawal
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Setting (7)

But for those who in fact had an MI, we don’t know this. And for
those who did not, we don’t know this either.

follow-up time

MI censoringdeathintervention withdrawal
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Setting (8)

So here is a depiction of our data:

follow-up time

MI censoringdeathintervention withdrawal

?

?

?

?
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Setting (8)

So here is a depiction of our data:

follow-up time

MI censoringdeathintervention withdrawal

?

?

?

?

Question

How can we best use this additional information on death
times to estimate the distribution of time to composite
endpoint?
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Setting (8)

So here is a depiction of our data:

follow-up time

MI censoringdeathintervention withdrawal

?

?

?

?

Suggestions

– Ignore the extra information –inefficient
– Treat the extra times-to-death as times-to-composite-
endpoint –biased since wrongly assumes no MI for
dropouts
– Impute the missing times-to-MI using all the available
information –prone to bias from misspecifying the imputa-
tion model
– Ideally want a principled alternative, not too dependent
on extra parametric models –we will achieve this using
the semiparametric theory of augmented inverse proba-
bility weighted estimating equations
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Ci : censoring time

calendar time

Recruitment Study
end

MI censoringdeathintervention

Ci
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Ci : censoring time

calendar time

Recruitment Study
end

MI censoringdeathintervention

Ci
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U∗
i : time to first event or censoring

follow-up time

MI censoringdeathintervention withdrawal

U*i=Ci
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∆∗
i = 0: U∗

i is a censoring time

follow-up time

MI censoringdeathintervention withdrawal
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∆∗
i = 1: U∗

i is a death time

follow-up time

MI censoringdeathintervention withdrawal
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∆∗
i = 2: U∗

i is a time to MI

follow-up time

MI censoringdeathintervention withdrawal
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Di : time to death or censoring

follow-up time

MI censoringdeathintervention withdrawal

Di=Ci
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Di : time to death or censoring

follow-up time

MI censoringdeathintervention withdrawal

Di<Ci
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Γi = 0: Di is a censoring time

follow-up time

MI censoringdeathintervention withdrawal
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Γi = 1: Di is a death time

follow-up time

MI censoringdeathintervention withdrawal
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Wi : time to withdrawal

follow-up time

MI censoringdeathintervention withdrawal

Wi
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Wi : time to withdrawal

follow-up time

MI censoringdeathintervention withdrawal

Wi
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Wi =∞: for those who don’t withdraw

follow-up time

MI censoringdeathintervention withdrawal
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Ui : time to first event or censoring or withdrawal

follow-up time

MI censoringdeathintervention withdrawal

Ui=Wi
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Ui : time to first event or censoring or withdrawal

follow-up time

MI censoringdeathintervention withdrawal

Ui
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Ui : time to first event or censoring or withdrawal

follow-up time

MI censoringdeathintervention withdrawal

Ui=Wi

Rhian Daniel/Missing data and composite endpoints 22/79



∆i = 0: Ui is a censoring time

follow-up time

MI censoringdeathintervention withdrawal
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∆i = 1: Ui is a death time

follow-up time

MI censoringdeathintervention withdrawal
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∆i = 2: Ui is a time to MI

follow-up time

MI censoringdeathintervention withdrawal
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∆i = −1: Ui is a withdrawal time

follow-up time

MI censoringdeathintervention withdrawal
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Notation summary (1)

— Ci : time to censoring
— U∗i : time to MI or death or censoring
— ∆∗i : event ‘indicator’ for U∗i ,

∆∗i =

 0 if U∗i = Ci
1 if U∗i is time to death
2 if U∗i is time to MI

— Di : time to death or censoring
— Γi : event indicator for Di ,

Γi =

{
0 if Di = Ci
1 if Di is time to death

— Wi ∈ (0,U∗i ) ∪ {∞}: time to withdrawal
— Ui : time to MI or death or withdrawal or censoring
— ∆i : event ‘indicator’ for Ui ,

∆i =


−1 if Ui = Wi
0 if Ui = Ci
1 if Ui is time to death
2 if Ui is time to MI
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Notation summary (2)

— In addition, let X̄i (t) be a vector of time-updated covariates for
subject i as collected up to time t .

— X̄i (0) are therefore the baseline covariates.
— The full data for subject i (what we would see if hypothetically
there were no withdrawals) are:

Fi =
{

Ci ,U∗i ,∆
∗
i , X̄i (U∗i ) ,Di , Γi

}
.

— The observed data for subject i are:

Oi =
{

Ci ,Ui ,∆i , X̄i (Ui ) ,Di , Γi
}
.

— The level-r coarsened data for subject i are:

Gr (Fi ) ={
Ci , I (U∗i < r) , I (U∗i < r) U∗i , I (U∗i < r) ∆∗i , X̄i {min (r ,U∗i )} ,Di , Γi

}
.

(think of this as the information we would see on subject i were s/he
to withdraw at time r )
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Notation summary (3)

— Writing Ti for the uncensored time to composite endpoint, we are
interested in estimating the usual related survival estimands:

– the survivor function

S (t) = Pr (Ti > t) ,

– the hazard function

λ (t) = lim
∆t→0

1
∆t

Pr (t ≤ Ti < t + ∆t |Ti ≥ t )

– and the cumulative hazard function:

Λ (t) =

∫ t

0
λ (u) du,

with

S (t) = exp {−Λ (t)} = exp

{
−
∫ t

0
λ (u) du

}
.
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Counting processes notation

— We write
N∗i (t) = I (U∗i ≤ t ,∆∗i ∈ {1,2})

for the counting process associated with the composite endpoint in
the absence of withdrawal.

— With withdrawal:

Ni (t) = I (Ui ≤ t ,∆i ∈ {1,2}) .

— The risk set indicator at time t , in the absence of withdrawal:

Y ∗i (t) = I (U∗i ≥ t) .

— With withdrawal:
Yi (t) = I (Ui ≥ t) .
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N∗
i (t): counting process for the composite endpoint

(in the absence of withdrawal)

follow-up time

MI censoringdeathintervention
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Ni (t): counting process for the composite endpoint
with withdrawal

follow-up time
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Ni t
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Ni (t): counting process for the composite endpoint
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Y ∗
i (t): risk set for the composite endpoint

(in the absence of withdrawal)

follow-up time

MI censoringdeathintervention

t

0

1

Yi t
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Yi (t): risk set for the composite endpoint
with withdrawal

follow-up time

MI censoringdeathintervention

t
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1

Yi t
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Why is this notation useful?

— It allows us to express the process in this form:

dN∗
i (t)︸ ︷︷ ︸

‘outcome’

=

λ (t) · dt︷ ︸︸ ︷
dΛ (t) Y ∗

i (t)︸ ︷︷ ︸
‘fixed part’

+ d

martingale︷︸︸︷
ζi (t)︸ ︷︷ ︸
‘error’

— Properties of martingales are well-understood.
— This has the feel of a regression model.
— Estimators via estimating equations, eg familiar Nelson–Aalen:

n∑
i=1

{dN∗i (t)− dΛ (t) Y ∗i (t)} = 0.

References

Andersen PK et al (1993) Statistical Models based on Counting
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Statistical models

— A modelM for a set of i.i.d. observations Z1,Z2, . . . ,Zn is a set of
densities

M = {p (z, θ) : θ ∈ Θ}

that could have given rise to the data, indexed by a parameter θ.

— If θ is finite-dimensional, thenM is parametric.
— If θ can be partitioned as

θ =
(
βT , ηT

)T

where β is a finite-dimensional parameter of interest, and η is an
infinite-dimensional nuisance parameter, thenM is semiparametric.
— In practice, such models arise when η can be any real-valued
function (cf baseline hazard function). For this reason, we write
∞-dimensional η as η (·).
— IfM contains all possible densities for Z then it is nonparametric.
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Why be interested in semiparametric models?

— In a perfect randomised clinical trial, very little needs to be
modelled. We can usually compare the distribution of the outcome
between two groups with minimal parametric assumptions.

— As we move away from this ideal, either because the data are
incomplete, subject to measurement error, or the treatment is not
randomised requiring confounder-adjustments, we often need to use
more variables (confounders, or variables conditional on which we
believe MAR approximately holds etc).
— The more variables we have, the more difficult it gets to specify a
correct parametric model for their joint distribution (or whatever
aspects of that joint distribution we require).
— In these ‘non-ideal’ settings, semiparametric models that leave
some of these additional modelling aspects unspecified, are
particularly appealing.
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Semiparametric estimator

— Given a semiparametric modelM, a semiparametric estimator β̂
of q-dimensional β must be consistent

β̂ − β P{β,η(·)}−−−−−−→ 0

and asymptotically normal

n
1
2

(
β̂ − β

) D{β,η(·)}−−−−−−→ N
(
0,Σq×q {β, η (·)}

)
for all p {z, β, η (·)} ∈ M.
— So, the larger the model, the smaller the class of semiparametric
estimators.

∗ P{β,η(·)}
−−−−−−−→: convergence in probability,

D{β,η(·)}
−−−−−−−→: convergence in distribution, for density p {z, β, η (·)}.
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Asymptotically linear estimators and influence functions

— An estimator β̂ is asymptotically linear if it can be written as

n
1
2

(
β̂ − β0

)
= n−

1
2

n∑
i=1

ϕ (Zi ) + op (1)

where β0 is the true value of β, op (1) converges in probability to zero,
and ϕ (Zi ) is a (q × 1) random vector, Eθ0 {ϕ (Zi )} = 0,
Eθ0

{
ϕ (Zi )ϕ (Zi )

T
}
<∞, det

[
Eθ0

{
ϕ (Zi )ϕ (Zi )

T
}]
6= 0.

— ϕ (Zi ) is the i th influence function of β̂.
— Note that

n
1
2

(
β̂ − β0

) D{β0,η0(·)}−−−−−−−→ N
(

0,Eθ0

{
ϕ (Zi )ϕ (Zi )

T
})

.

Thus the asymptotic properties of an asymptotically linear estimator
are governed by its influence function.
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Semiparametric theory (in a slide!)

— Maximum likelihood→ efficient estimators in parametric models.

— Historically, estimation in semiparametric models was less
systematic (partial likelihood, quasi likelihood, . . . )
— These are good estimators, but context-specific and optimality
properties not always clear.
— Semiparametric theory fixes this. Influence functions live in Hilbert
spaces, whose geometry is well-understood. Loosely, distances in
Hilbert spaces represent variances, so efficient estimators have
influence functions close to the origin.
— It gives a neat way of constructing good estimators. If we can find
‘any old’ semiparametric estimator, we can use geometric projections
to find a better/best estimator.
— Useful for missing data, where a ‘bad’ semiparametric estimator is
easy to construct (IPW). This is then improved by augmentation.

Key reference

Tsiatis (2006) Semiparametric Theory and Missing Data.
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Full data estimator

— Were there no withdrawals, we would assume independent
censoring (Ci ⊥⊥ Ti ) and no further assumptions.

— Call this modelMfull.
— Then we would solve:

n∑
i=1

{dN∗i (t)− dΛ (t) Y ∗i (t)} = 0

— This leads to the Nelson–Aalen cumulative hazard estimator:

Λ̂full (t) =

∫ t

0

∑n
i=1 dN∗i (u)∑n
i=1 Y ∗i (u)

— And the Breslow estimator of the survivor function:

Ŝfull (t) = exp
{
−Λ̂full (t)

}
.

— Λ̂full (t) is the only semiparametric estimator of Λ (t) forMfull, and
thus it is (trivially) semiparametric efficient (see Tsiatis (2006) for precise definition).
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Complete case estimator (1)

— In the presence of withdrawals, we don’t have the data to solve
n∑

i=1

{dN∗i (t)− dΛ (t) Y ∗i (t)} = 0.

— To proceed we must assume something about the withdrawal
mechanism.
— Suppose we assume that withdrawal is independent:

lim
∆t→0

1
∆t

Pr (t ≤Wi < t + ∆t |Wi ≥ t ,U∗i ,∆
∗
i ) = I (U∗i ≥ t)κ (t) .

— Call this model (independent withdrawal, together with
independent censoring, but nothing else)Mind.
— Then withdrawal is ‘just another form of censoring’ and so the
Nelson–Aalen estimator for the observed data is consistent.
— That is, we solve:

n∑
i=1

{dNi (t)− dΛ (t) Yi (t)} = 0.
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Complete case estimator (2)

— We now confirm that this estimator is consistent.

— To do so, we need to show that

E {dNi (t)− dΛ (t) Yi (t)} = 0.

— First note that

dNi (t)− dΛ (t) Yi (t) = I (Wi > t) {dN∗i (t)− dΛ (t) Y ∗i (t)}

— and thus

E {dNi (t)− dΛ (t) Yi (t)}
= E [I (Wi > t) {dN∗i (t)− dΛ (t) Y ∗i (t)}]
= E (E [ I (Wi > t) {dN∗i (t)− dΛ (t) Y ∗i (t)}|U∗i ,∆∗i ])

= E [Pr (Wi > t |U∗i ,∆∗i ) {dN∗i (t)− dΛ (t) Y ∗i (t)}] .
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Complete case estimator (3)

— Independent withdrawal implies:

Pr (Wi > t |U∗i ,∆∗i ) = exp

{
−
∫ t

0
I (U∗i ≥ u)κ (u) du

}

= exp

{
−
∫ min(t,U∗i )

0
κ (u) du

}

= I (U∗i ≥ t) exp

{
−
∫ t

0
κ (u) du

}

+ I (U∗i < t) exp

{
−
∫ U∗i

0
κ (u) du

}
.
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Complete case estimator (4)

— Thus,

E {dNi (t)− dΛ (t) Yi (t)} = E

([
I (U∗i ≥ t) exp

{
−
∫ t

0
κ (u) du

}
+

I (U∗i < t) exp

{
−
∫ U∗i

0
κ (u) du

}]
{dN∗i (t)− dΛ (t) Y ∗i (t)}

)
.
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Complete case estimator (5)

— But

I (U∗i ≥ t) {dN∗i (t)− dΛ (t) Y ∗i (t)} = dN∗i (t)− dΛ (t) Y ∗i (t)

and
I (U∗i < t) {dN∗i (t)− dΛ (t) Y ∗i (t)} = 0

— So this simplifies to give:

E {dNi (t) −dΛ (t) Yi (t)}

= E

[
exp

{
−
∫ t

0
κ (u) du

}
{dN∗i (t)− dΛ (t) Y ∗i (t)}

]

= exp

{
−
∫ t

0
κ (u) du

}
E {dN∗i (t)− dΛ (t) Y ∗i (t)}︸ ︷︷ ︸

=0

= 0

as required.
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Complete case estimator (6)

— This leads to:

Λ̂CC (t) =

∫ t

0

∑n
i=1 dNi (u)∑n
i=1 Yi (u)

.

— And the corresponding Breslow estimator of S (t) (which we won’t
keep stating).
— Λ̂CC (t) is a semiparametric estimator under modelMind.
— But it’s not the only one, nor the most efficient.
— It does not use the data on (Di , Γi ) for those who withdraw.
— Later we’ll augment the estimating function to include these
additional data without restricting the model further, improving
efficiency.
— First, however, we consider relaxing the assumption of
independent withdrawal.
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Inverse probability weighted CC estimator (1)

— Independent withdrawal often implausible.
— We may wish to relax this to an assumption of covariate-driven
withdrawal at random:

lim
∆t→0

1
∆t

Pr (t ≤Wi < t + ∆t |Wi ≥ t ,Fi ) = I (U∗i ≥ t)λ
{

t , X̄i (t)
}

— Call this model (covariate-driven withdrawal, independent
censoring, nothing else)MCDW.
— Note that this is a ‘missing at random’ mechanism since
I (U∗i ≥ t) , I (U∗i ≥ t) X̄i (t) ∈ Gt (Fi ) .
— Recall that under independent withdrawal we had:

E {dNi (t)− dΛ (t) Yi (t)} = E [Pr (Wi > t |U∗i ,∆∗i ) {dN∗i (t)− dΛ (t) Y ∗i (t)}]

= exp

{
−
∫ t

0
κ (u) du

}
E {dN∗i (t)− dΛ (t) Y ∗i (t)}

— This will not hold, when Pr (Wi > t |Fi ) depends on X̄i (t), and
X̄i (t) is associated with U∗i ,∆

∗
i .
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Inverse probability weighted CC estimator (2)

— So, under covariate-driven withdrawal at random, Λ̂CC (t) is not a
consistent estimator of Λ (t).

— Under covariate-driven withdrawal at random, we can correct for
this inconsistency by simple inverse probability weighting.
— The estimating equation becomes:

n∑
i=1

dNi (t)− dΛ (t) Yi (t)
Pr
{

Wi > t
∣∣U∗i ≥ t , X̄i (t)

} = 0,

— And the IPWCC estimator is:

Λ̂IPWCC (t) =

∫ t

0

∑n
i=1

dNi (u)

Pr{Wi>t|U∗i ≥t,X̄i (t)}∑n
i=1

Yi (u)

Pr{Wi>t|U∗i ≥t,X̄i (t)}
.
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Inverse probability weighted CC estimator (3)

— To see that this estimator is consistent, note that:

E

{
dNi (t)− dΛ (t) Yi (t)

Pr
{

Wi > t
∣∣U∗i ≥ t , X̄i (t)

}}

= E

{
I (Wi > t) {dN∗i (t)− dΛ (t) Y ∗i (t)}

Pr
{

Wi > t
∣∣U∗i ≥ t , X̄i (t)

} }

= E

[
E

{
I (Wi > t) {dN∗i (t)− dΛ (t) Y ∗i (t)}

Pr
{

Wi > t
∣∣U∗i ≥ t , X̄i (t)

} ∣∣∣∣∣Fi

}]

= E

[
Pr (Wi > t | Fi ) {dN∗i (t)− dΛ (t) Y ∗i (t)}

Pr
{

Wi > t
∣∣U∗i ≥ t , X̄i (t)

} ]
= E {dN∗i (t)− dΛ (t) Y ∗i (t)} = 0

under covariate-driven withdrawal at random.
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Inverse probability weighted CC estimator (4)

— Λ̂IPWCC (t) is a semiparametric estimator of Λ (t) under model
MCDW, but again it is not the only one, and is not semiparametric
efficient: it ignores data on (Di , Γi ) for those who withdraw.

— Also, in practice must specify a model for

Pr
{

Wi > t
∣∣U∗i ≥ t , X̄i (t)

}
= K

{
t , X̄i (t) ; γ

}
— LetMCM (for ‘coarsening model’) be the set of densities for which
this holds.
— The feasible IPWCC estimator is then:

Λ̂f-IPWCC (t) =

∫ t

0

∑n
i=1

dNi (u)

K{t,X̄i (t);γ̂}∑n
i=1

Yi (u)

K{t,X̄i (t);γ̂}

— Λ̂f-IPWCC (t) is a semiparametric estimator underMCDW ∩MCM.
Also, provided that γ are estimated sufficiently efficiently by γ̂,
Λ̂f-IPWCC (t) is more efficient than Λ̂IPWCC (t). (Why?)
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Extended IPWCC

— So far made no use of data on (Di , Γi ) for those who withdraw.

— The simplest way to incorporate this additional information is to
extend the weights model toMECM:

Pr
{

Wi > t
∣∣U∗i ≥ t , X̄i (t) ,Di , Γi

}
= K̃

{
t , X̄i (t) ,Di , Γi ; γ̃

}
— The feasible extended IPWCC estimator is:

Λ̂f-IPWCC-ext (t) =

∫ t

0

∑n
i=1

dNi (u)

K̃{t,X̄i ,Di ,Γi (t);ˆ̃γ}∑n
i=1

Yi (u)

K̃{t,X̄i ,Di ,Γi (t);ˆ̃γ}
— This has the advantage of being consistent under
covariate-and-death-time-driven withdrawal at random (MCDDW):

lim
∆t→0

1
∆t

Pr (t ≤Wi < t + ∆t |Wi ≥ t ,Fi ) = I (U∗i ≥ t) ν
{

t , X̄i (t) ,Di , Γi
}

— And is also more efficient than Λ̂f-IPWCC (t) even under
MCDW ∩MCM. (Why?)
— But it’s not semiparametric efficient. We can do better. . .
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Augmented IPWCC (1)

— Consider augmenting the IPWCC estimating equation to:

n∑
i=1

[
dNi (t)− dΛ (t) Yi (t)

Pr
{

Wi > t
∣∣U∗i ≥ t , X̄i (t)

}
+

∫ t

0

dMi (u)

Pr
{

Wi > u
∣∣U∗i ≥ u, X̄i (u)

}h {u,Gu (Fi )}

]
= 0

where

dMi (u) = lim
∆u→0

[
I (u ≤Wi < u + ∆u)− λ

{
u, X̄i (u)

}
I (Wi ≥ u)

]
I (U∗i ≥ u)

and h {u,Gu (Fi )} is an arbitrary function at time u of Gu (Fi ).
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Augmented IPWCC (2)

— Under covariate-driven withdrawal at random

E {dMi (u) |Gu (Fi )} = 0.

— Thus the augmented estimator is consistent underMCDW for any
choice of h {u,Gu (Fi )}.
— Semiparametric theory shows that the optimal (most efficient)
choice of h {u,Gu (Fi )} is

hopt {u,Gu (Fi )} = E {dN∗i (t)− dΛ (t) Y ∗i (t)|Gu (Fi )}
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Augmented IPWCC (3)

— This conditional expectation is equal to:

I (Ci > t) I (U∗i > u)

H
{

u, X̄i (u) ,Di , Γi
} (I (Di = t) H

{
t , X̄i (u) ,Di , Γi

}
+ {I (Ci ≤ Di ) + I (Ci > Di ) I (Di > t)} ·[

dH
{

t , X̄i (u) ,Di , Γi
}
− dΛ (t) H

{
t , X̄i (u) ,Di , Γi

}])
where I (Di = t) is used as shorthand for lim∆t→0 I (t ≤ Di < t + ∆t),
µ
(
u, X̄i (u) ,Di , Γi

)
is the cause-specific conditional hazard of MI

given X̄i (u), Di , and Γi ,
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Augmented IPWCC (4)

H
{

u, X̄i (u) ,Di , Γi
}

= exp
{
−
∫ u

0
µ
(
r , X̄i (r) ,Di , Γi

)
dr
}
,

H
{

t , X̄i (u) ,Di , Γi
}

=∫
x̄∈X̄ (t)

H
{

t , X̄i (t) = x̄,Di , Γi
}

fX̄(t)|X̄(u),D,Γ

{
x̄, X̄ (u) ,Di , Γi

}
d x̄

and

dH
{

t , X̄i (u) ,Di , Γi
}

= lim
∆t→0

[
H
{

t + ∆t , X̄i (u) ,Di , Γi
}

−H
{

t , X̄i (u) ,Di , Γi
}]
.
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Augmented IPWCC (5)

— These are substituted into the estimating equation, which can then
be solved for dΛ (t), leading to the AIPW estimator Λ̂AIPW (t) (further
ugly details omitted!).

— To make it feasible (Λ̂f-AIPW (t)) we need a coarsening model
(MCM), but also a model (MCSM) for µ

(
u, X̄i (u) ,Di , Γi

)
, the

cause-specific conditional hazard of MI, and for the conditional
density of the time-updated covariates fX̄(t)|X̄(u),D,Γ

{
x̄, X̄ (u) ,Di , Γi

}
,

MTUCM.
— We can also extend it (Λ̂f-AIPW-ext (t)), by including (Di , Γi ) in the
coarsening model (MECM).
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Double robustness and semiparametric efficiency (1)

— It can be shown that Λ̂f-AIPW (t) is semiparametric under

MCDW ∩ {MCM ∪ (MCSM ∩MTUCM)}

— And that Λ̂f-AIPW-ext (t) is semiparametric under

MCDDW ∩ {MECM ∪ (MCSM ∩MTUCM)} .

— Furthermore, Λ̂f-AIPW (t) is semiparametric efficient under

MCDW ∩MCM ∩MCSM ∩MTUCM

— and Λ̂f-AIPW-ext (t) is semiparametric efficient under

MCDDW ∩MECM ∩MCSM ∩MTUCM.

— If we correctly specify either the coarsening model or both the
cause-specific and time-updated covariates models (or all three),
then the AIPW estimator will be consistent.
— This property is known as double robustness.

Rhian Daniel/Missing data and composite endpoints 65/79



Double robustness and semiparametric efficiency (1)

— It can be shown that Λ̂f-AIPW (t) is semiparametric under

MCDW ∩ {MCM ∪ (MCSM ∩MTUCM)}

— And that Λ̂f-AIPW-ext (t) is semiparametric under

MCDDW ∩ {MECM ∪ (MCSM ∩MTUCM)} .

— Furthermore, Λ̂f-AIPW (t) is semiparametric efficient under

MCDW ∩MCM ∩MCSM ∩MTUCM

— and Λ̂f-AIPW-ext (t) is semiparametric efficient under

MCDDW ∩MECM ∩MCSM ∩MTUCM.

— If we correctly specify either the coarsening model or both the
cause-specific and time-updated covariates models (or all three),
then the AIPW estimator will be consistent.
— This property is known as double robustness.

Rhian Daniel/Missing data and composite endpoints 65/79



Double robustness and semiparametric efficiency (1)

— It can be shown that Λ̂f-AIPW (t) is semiparametric under

MCDW ∩ {MCM ∪ (MCSM ∩MTUCM)}

— And that Λ̂f-AIPW-ext (t) is semiparametric under

MCDDW ∩ {MECM ∪ (MCSM ∩MTUCM)} .

— Furthermore, Λ̂f-AIPW (t) is semiparametric efficient under

MCDW ∩MCM ∩MCSM ∩MTUCM

— and Λ̂f-AIPW-ext (t) is semiparametric efficient under

MCDDW ∩MECM ∩MCSM ∩MTUCM.

— If we correctly specify either the coarsening model or both the
cause-specific and time-updated covariates models (or all three),
then the AIPW estimator will be consistent.
— This property is known as double robustness.

Rhian Daniel/Missing data and composite endpoints 65/79



Double robustness and semiparametric efficiency (1)

— It can be shown that Λ̂f-AIPW (t) is semiparametric under

MCDW ∩ {MCM ∪ (MCSM ∩MTUCM)}

— And that Λ̂f-AIPW-ext (t) is semiparametric under

MCDDW ∩ {MECM ∪ (MCSM ∩MTUCM)} .

— Furthermore, Λ̂f-AIPW (t) is semiparametric efficient under

MCDW ∩MCM ∩MCSM ∩MTUCM

— and Λ̂f-AIPW-ext (t) is semiparametric efficient under

MCDDW ∩MECM ∩MCSM ∩MTUCM.

— If we correctly specify either the coarsening model or both the
cause-specific and time-updated covariates models (or all three),
then the AIPW estimator will be consistent.
— This property is known as double robustness.

Rhian Daniel/Missing data and composite endpoints 65/79



Double robustness and semiparametric efficiency (1)

— It can be shown that Λ̂f-AIPW (t) is semiparametric under

MCDW ∩ {MCM ∪ (MCSM ∩MTUCM)}

— And that Λ̂f-AIPW-ext (t) is semiparametric under

MCDDW ∩ {MECM ∪ (MCSM ∩MTUCM)} .

— Furthermore, Λ̂f-AIPW (t) is semiparametric efficient under

MCDW ∩MCM ∩MCSM ∩MTUCM

— and Λ̂f-AIPW-ext (t) is semiparametric efficient under

MCDDW ∩MECM ∩MCSM ∩MTUCM.

— If we correctly specify either the coarsening model or both the
cause-specific and time-updated covariates models (or all three),
then the AIPW estimator will be consistent.

— This property is known as double robustness.

Rhian Daniel/Missing data and composite endpoints 65/79



Double robustness and semiparametric efficiency (1)

— It can be shown that Λ̂f-AIPW (t) is semiparametric under

MCDW ∩ {MCM ∪ (MCSM ∩MTUCM)}

— And that Λ̂f-AIPW-ext (t) is semiparametric under

MCDDW ∩ {MECM ∪ (MCSM ∩MTUCM)} .

— Furthermore, Λ̂f-AIPW (t) is semiparametric efficient under

MCDW ∩MCM ∩MCSM ∩MTUCM

— and Λ̂f-AIPW-ext (t) is semiparametric efficient under

MCDDW ∩MECM ∩MCSM ∩MTUCM.

— If we correctly specify either the coarsening model or both the
cause-specific and time-updated covariates models (or all three),
then the AIPW estimator will be consistent.
— This property is known as double robustness.

Rhian Daniel/Missing data and composite endpoints 65/79



Double robustness and semiparametric efficiency (2)

— Double robustness is especially important in our setting, where it is
probably unrealistic to hope that the cause-specific and time-updated
covariates models are correctly specified.

— Under only the assumption that the coarsening model is correctly
specified, the f-AIPW estimator is consistent.
— Furthermore, if we correctly specify all three models, then the
f-AIPW estimator is optimally efficient.
— In practice, when the cause-specific and time-updated covariates
models are not correctly specified, experience suggests that
augmentation will lead to efficiency gains as long as model
misspecification is not too severe.
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Variance estimation

— Another beauty of semiparametric theory is that it gives an
automatic strategy for deriving variance estimators.

— The asymptotic variance of the estimator is equal to the variance
of its influence function.
— See paper for details.
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Simulation study
Design

— 1000 datasets, sample size = 100.
— One binary baseline covariate, X , with Pr (X = 1) = 0.5. No
time-updated covariates.

— Subjects enter the study uniformly at random over 2 years,
administrative censoring at 5 years.
— Conditional on X , time to MI is Weibull with shape 0.5 and scale
{10 exp (1.5− 3X )}.
— Conditional on X , time to death is exponential with hazard
0.24 exp (−1.5 + 3X ). This time to death is compared with time to MI.
If MI occurs first then the time to death is discarded, and the time to
death is re-generated as the MI time plus a draw from exponential
with hazard 0.6 exp (−1.5 + 3X ).
— Conditional on X , withdrawal is exponential with hazard
exp (−0.5 + X ).
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Simulation study
Estimators to be compared

We compare five estimators of the survivor distribution:

1 the full data estimator, Ŝfull (t).

2 the complete case estimator, ŜCC (t).

3 the IPWCC estimator, Ŝf-IPWCC (t), with only X used to predict
the weights using Cox PH model. This coarsening model is
correctly specified.

4 the IPWCC estimator, Ŝf-IPWCC-ext (t), with X and (D, Γ) used to
predict the weights using a Cox PH model. Correctly specified
but more elaborate than necessary.

5 the AIPW estimator, Ŝf-AIPW-ext (t). X and (D, Γ) used in the
model for the weights, and for the cause-specific MI model in a
Cox PH model. This CS model is not correctly specified.
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Simulation study
Results: S (0.5)

Estimator of survivor Mean SE % increase Coverage of
function in SE 95% CI

compared with
full data

full 0.622 0.0464
CC 0.631 0.0479 3.3%

f-IPWCC 0.622 0.0486 4.9%
f-IPWCC-ext 0.622 0.0482 4.0%
f-AIPW-ext 0.622 0.0475 2.3% 94.7%
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Simulation study
Results: S (1.5)

Estimator of survivor Mean SE % increase Coverage of
function in SE 95% CI

compared with
full data

full 0.430 0.0485
CC 0.463 0.0536 10.4%

f-IPWCC 0.432 0.0535 10.2%
f-IPWCC-ext 0.432 0.0524 7.9%
f-AIPW-ext 0.430 0.0513 5.6% 95.9%
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Simulation study
Results: S (2.5)

Estimator of survivor Mean SE % increase Coverage of
function in SE 95% CI

compared with
full data

full 0.359 0.0483
CC 0.401 0.0564 16.7%

f-IPWCC 0.363 0.0548 13.3%
f-IPWCC-ext 0.363 0.0541 11.9%
f-AIPW-ext 0.360 0.0512 6.0% 96.7%

Rhian Daniel/Missing data and composite endpoints 74/79



Simulation study
Results: S (3.5)

Estimator of survivor Mean SE % increase Coverage of
function in SE 95% CI

compared with
full data

full 0.318 0.0480
CC 0.362 0.0596 24.3%

f-IPWCC 0.324 0.0569 18.6%
f-IPWCC-ext 0.326 0.0556 16.0%
f-AIPW-ext 0.320 0.0522 8.9% 95.6%
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Simulation study
Results: S (4.5)

Estimator of survivor Mean SE % increase Coverage of
function in SE 95% CI

compared with
full data

full 0.288 0.0495
CC 0.332 0.0689 39.1%

f-IPWCC 0.297 0.0640 30.0%
f-IPWCC-ext 0.301 0.0619 25.0%
f-AIPW-ext 0.289 0.0573 15.8% 93.8%
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Summary

— Semiparametric theory of augmented inverse probability weighted
estimating equations is powerful, especially for complex, ‘non-ideal’
settings.

— We’ve shown how partial information on components of a
composite endpoint can be incorporated into the estimation of the
time to composite endpoint in a principled way, when other
components of the composite endpoint are not observed due to
withdrawal.
— An appeal of this approach is that, although further models are
required (for the cause-specific hazard of the incompletely-observed
event, and for the evolution of the time-updated covariate process, if
this is to be modelled), the consistency of our estimator does not rely
on having correctly specified these models.
— Efficiency gains are guaranteed if the additional models are
correctly specified, and typically will be seen even if this is not the
case.
— In simulations, AIPW seen to recover up to 50% of the efficiency
lost through withdrawal in standard approaches.

Rhian Daniel/Missing data and composite endpoints 78/79



Summary

— Semiparametric theory of augmented inverse probability weighted
estimating equations is powerful, especially for complex, ‘non-ideal’
settings.
— We’ve shown how partial information on components of a
composite endpoint can be incorporated into the estimation of the
time to composite endpoint in a principled way, when other
components of the composite endpoint are not observed due to
withdrawal.

— An appeal of this approach is that, although further models are
required (for the cause-specific hazard of the incompletely-observed
event, and for the evolution of the time-updated covariate process, if
this is to be modelled), the consistency of our estimator does not rely
on having correctly specified these models.
— Efficiency gains are guaranteed if the additional models are
correctly specified, and typically will be seen even if this is not the
case.
— In simulations, AIPW seen to recover up to 50% of the efficiency
lost through withdrawal in standard approaches.

Rhian Daniel/Missing data and composite endpoints 78/79



Summary

— Semiparametric theory of augmented inverse probability weighted
estimating equations is powerful, especially for complex, ‘non-ideal’
settings.
— We’ve shown how partial information on components of a
composite endpoint can be incorporated into the estimation of the
time to composite endpoint in a principled way, when other
components of the composite endpoint are not observed due to
withdrawal.
— An appeal of this approach is that, although further models are
required (for the cause-specific hazard of the incompletely-observed
event, and for the evolution of the time-updated covariate process, if
this is to be modelled), the consistency of our estimator does not rely
on having correctly specified these models.

— Efficiency gains are guaranteed if the additional models are
correctly specified, and typically will be seen even if this is not the
case.
— In simulations, AIPW seen to recover up to 50% of the efficiency
lost through withdrawal in standard approaches.

Rhian Daniel/Missing data and composite endpoints 78/79



Summary

— Semiparametric theory of augmented inverse probability weighted
estimating equations is powerful, especially for complex, ‘non-ideal’
settings.
— We’ve shown how partial information on components of a
composite endpoint can be incorporated into the estimation of the
time to composite endpoint in a principled way, when other
components of the composite endpoint are not observed due to
withdrawal.
— An appeal of this approach is that, although further models are
required (for the cause-specific hazard of the incompletely-observed
event, and for the evolution of the time-updated covariate process, if
this is to be modelled), the consistency of our estimator does not rely
on having correctly specified these models.
— Efficiency gains are guaranteed if the additional models are
correctly specified, and typically will be seen even if this is not the
case.

— In simulations, AIPW seen to recover up to 50% of the efficiency
lost through withdrawal in standard approaches.

Rhian Daniel/Missing data and composite endpoints 78/79



Summary

— Semiparametric theory of augmented inverse probability weighted
estimating equations is powerful, especially for complex, ‘non-ideal’
settings.
— We’ve shown how partial information on components of a
composite endpoint can be incorporated into the estimation of the
time to composite endpoint in a principled way, when other
components of the composite endpoint are not observed due to
withdrawal.
— An appeal of this approach is that, although further models are
required (for the cause-specific hazard of the incompletely-observed
event, and for the evolution of the time-updated covariate process, if
this is to be modelled), the consistency of our estimator does not rely
on having correctly specified these models.
— Efficiency gains are guaranteed if the additional models are
correctly specified, and typically will be seen even if this is not the
case.
— In simulations, AIPW seen to recover up to 50% of the efficiency
lost through withdrawal in standard approaches.

Rhian Daniel/Missing data and composite endpoints 78/79



Further issues

— Although the approach can deal in theory with time-updated
covariates, in practice incorporating these into the cause-specific
model for the incompletely-observed event will be problematic, since
further models are required, along with the calculation of a typically
intractable integral.

— A pragmatic solution would be to omit time-updated covariates
from the cause-specific model, but further work is required to
understand the sacrifice involved in doing so.
— Future work: the comparison of the distributions of time to
composite endpoint in two independent groups, via a weighted
log-rank test.

Rhian Daniel/Missing data and composite endpoints 79/79



Further issues

— Although the approach can deal in theory with time-updated
covariates, in practice incorporating these into the cause-specific
model for the incompletely-observed event will be problematic, since
further models are required, along with the calculation of a typically
intractable integral.
— A pragmatic solution would be to omit time-updated covariates
from the cause-specific model, but further work is required to
understand the sacrifice involved in doing so.

— Future work: the comparison of the distributions of time to
composite endpoint in two independent groups, via a weighted
log-rank test.

Rhian Daniel/Missing data and composite endpoints 79/79



Further issues

— Although the approach can deal in theory with time-updated
covariates, in practice incorporating these into the cause-specific
model for the incompletely-observed event will be problematic, since
further models are required, along with the calculation of a typically
intractable integral.
— A pragmatic solution would be to omit time-updated covariates
from the cause-specific model, but further work is required to
understand the sacrifice involved in doing so.
— Future work: the comparison of the distributions of time to
composite endpoint in two independent groups, via a weighted
log-rank test.

Rhian Daniel/Missing data and composite endpoints 79/79


