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Overview

Random loadings and variance models

Cross classified structural equation models

Cross classified structural equation models with random loadings
and variance

Random items, Generalizability Theory
Examples of new features in Mplus Version 7, to be released late
August

New multilevel features
New random effect features

Bayesian estimation where ML and WLS are not feasible.

The topics are covered more extensively in our August 27-29
course in Utrecht, see statmodel.com
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Random loadings and variance
models

Tihomir Asparouhov and Bengt Muthén Mplus Mplus 3/ 47



Two-level factor model with random loadings

ypij is the p−th observation for person i belonging to
cluster/group j. Group as a random mode.

ypij = µpj +λpjηij + εpij

Measurement invariance often fails with large samples where all
differences can be significant.

The loading λpj can vary across clusters as random effects

ML can estimate random effects for observed covariate but
random effects for latent factors leads to numerical integration.

Bayesian estimation straight forward even with categorical data
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Two-level factor model with random loadings: simulation
study with 5 indicators. ML v.s. Bayes.

Table: Absolute bias and coverage for factor analysis model with random
loadings - comparing Bayes v.s. ML-Montecarlo

parameter Bayes Monte 500 Monte 5000
θ1 0.00(0.97) 0.65(0.00) 0.42(0.01)
µ1 0.01(0.95) 0.01(0.78) 0.00(0.80)
λ1 0.01(0.96) 0.08(0.50) 0.04(0.60)
θ2 0.02(0.89) 0.23(0.31) 0.15(0.50)
ψ2 0.02(0.91) 0.10(0.23) 0.10(0.21)

Bayes is unbiased and has good coverage. ML is biased and has poor
coverage.
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The effect of treating random loadings as fixed parameters
in continuous variables.

Table: Absolute bias and coverage for factor analysis model with random
loadings - comparing random intercepts and loadings and v.s. random
intercepts and fixed loadings models

parameter Bayes ML with fixed loadings
θ1 0.00(0.97) 0.20(0.23)
µ1 0.01(0.95) 0.14(0.66)
λ1 0.01(0.96) 0.00(0.80)
θ2 0.02(0.89) 0.00(0.93)

Ignoring the random loadings leads to biased mean and variance
parameters and poor coverage. The loading is unbiased but has poor
coverage.
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The effect of treating random loadings as fixed parameters
in categorical variables.

Table: Absolute bias and coverage for factor analysis model with categorical
data and random loadings - comparing random loadings and intercepts v.s.
random intercepts and fixed loadings models

parameter Bayes WLSMV with fixed loadings
τ1 0.05(0.96) 0.17(0.63)
λ1 0.03(0.92) 0.13(0.39)
θ2 0.05(0.91) 0.11(0.70)

Ignoring the random loadings leads to biased mean, loading and
variance parameters and poor coverage.
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Random loadings with small number of clusters/groups

Many applications have small number of clusters/groups. How
many variables and random effects can we use?
Independent random effects model - works well even with 50
variables (100 random effects) and 10 clusters
Weakly informative priors are needed to eliminate biases for
cluster level variance parameters
Correlated random effects model (1-factor model) - works only
when ”number of clusters > number of random effects”. More
than 10 clusters are needed with 5 variables or more.
What happens if you ignore the correlation: standard error
underestimation, decreased accuracy in cluster specific estimates
BSEM: Muthén, B. and Asparouhov, T. (2012). Bayesian SEM:
A more flexible representation of substantive theory.
Forthcoming in Psychological Methods.
Using BSEM with 1-factor model for the random effects and tiny
priors N(1,σ) for the loadings resolves the problem.
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Random loadings extensions: Cluster specific variance
parameters

In a two-level model every residual variable εpij can have a
1-factor model

εpij = λpjξpij

Var(ξpij) = 1,Var(εpij) = λ
2
pj

√
Var(εpij) is normally distributed random effect

For data with large cluster sizes, variance differences across
groups are usually significantly different.
In multilevel models the mean is typically cluster specific, why
not the variance?
Ignoring differences in variability between groups leads to errors
in SE estimates.
Mplus implementation needs a small residual such as 0.1 for εpij.
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Random loadings extensions: Random loadings with group
specific factor means.

Model
ypij = µpj +λpjηij + εpij

ηij = ηw,ij +ηb,j

Group specific factor mean ηb,j

If the random loadings are fixed parameters estimating a model
with ηb,j is equivalent to estimating a factor model on the
between level.

Correlated µpj can not be estimated simultaneously with ηb,j:
both model between level covariance.

To estimate correlated µpj and ηb,j one can assume an anchor
item using Var(µ1j) = 0, i.e., assuming mean invariance for the
anchor.
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Random loadings extensions: Random loadings with group
specific factor means and variance.

Model
ypij = µpj +λpjηij + εpij

ηij = ηw,ij +ηb,j

ηw,ij = σjξij

For identification purposes Var(ξij) = 1

Group specific factor mean ηb,j

Group specific factor variance σ2
j

λpj, ηb,j and σj are between level random effects.

For identification purposes the mean of σj = 1
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Random loadings extensions: General model where all
parameters are cluster specific.

Model
ypij = µpj +λpjηij + εpij

Cluster specific intercept µpj

Cluster specific loading λpj

Cluster specific factor mean

Cluster specific factor variance Var(ηij)

Cluster specific residual variance Var(εpij)
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Random loadings extensions: Interaction between latent
variables

Random loading model allows the product of two latent
variables.

Using single level data with 1 observation in each cluster -
computational trick

Full information model with interaction terms between latent
variables: η1 ∗η2

Unlimited number of interactions (ML limited by dimensions of
integration)

It can be used with categorical or continuous variables.

Extends to two-level models.
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Random loadings extensions: Random EFA

In multiple group / multiple time points EFA measurement
invariance may not be full.

We need EFA where all the loadings are group specific random
effects.

Estimate unrotated cluster specific loading model to get the
cluster specific posterior for the unrotated solution

Rotate the unrotated cluster specific posterior: one cluster and
one MCMC iteration at a time.

Cluster specific posterior distribution for the rotated solution.

Methodology is based on Bayes EFA methodology: Mplus
Version 7.
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Random loadings example: multiple group factor analysis
with non-invariant measurement model

Student evaluation of teacher effectiveness, described in Marsh
and Hocevar (1991).

35 items, 24158 observations, 21 groups

Grouping based on the qualifications of the teacher and the
academic discipline

One factor model

Measurement invariance does not hold: large sample size.

Model modifications: not feasible with 21 groups
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Testing for non-zero variance of random loadings

Verhagen & Fox (2012) Bayesian Tests of Measurement
Invariance. Submitted.

Test the null hypothesis σ = 0 using Bayesian methodology

Substitute null hypothesis σ < 0.001.

Estimate the model with σ prior IG(1,0.005) with mode 0.0025

BF =
P(H0)

P(H1)
=

P(σ < 0.001|data)
P(σ < 0.001)

=
P(σ < 0.001|data)

0.7%

BF > 3 indicates loading has 0 variance, i.e., loading invariance
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Real data example - results

Table: Factor loading estimates for SEEQ data (variation range)

fixed random random random loadings σ BF for
means loadings BSEM σ < 0.001

0.76 0.79 0.81(0.67,0.94) 0.79(0.63,0.94) 0.005 0
0.78 0.81 0.82(0.71,0.92) 0.80(0.69,0.91) 0.003 0
0.80 0.80 0.82(0.71,0.93) 0.80(0.69,0.91) 0.003 0
0.73 0.74 0.76(0.67,0.85) 0.74(0.65,0.83) 0.002 3.4
0.88 0.83 0.85(0.70,1.01) 0.83(0.70,0.96) 0.006 0
0.89 0.83 0.85(0.74,0.96) 0.83(0.74,0.93) 0.003 0
0.84 0.75 0.77(0.64,0.91) 0.75(0.63,0.87) 0.005 0
0.90 0.87 0.89(0.83,0.95) 0.87(0.81,0.93) 0.001 16.9

Random loadings models show large range for standardized loadings
and significant variance components for most loadings.
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Random loadings in IRT

Fox, J.-P., and A. J. Verhagen (2011). Random item effects
modeling for cross-national survey data. In E. Davidov & P.
Schmidt, and J. Billiet (Eds.), Cross-cultural Analysis: Methods
and Applications.
Program for International Student Assessment (PISA 2003)
9,769 students across 40 countries on 8 quantitative math items.
Yijk - outcome for student i, in country j and item k

P(Yijk = 1) = Φ(ajkθij +bjk)

ajk ∼ N(ak,σa,k),bjk ∼ N(bk,σb,k)

Both discrimination and difficulty vary across country

θij = θ0j + εij

θ0j ∼ N(0,τ),εij ∼ N(0,vj),
√

vj ∼ N(1,σ)

The mean and variance of the ability vary across country
For identification purposes the mean of√vj is fixed to 1
Model preserves common measurement scale while
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Cross-classified structural equation
modeling
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Cross-classified data

Ypijk is the p−th observation for person i belonging to level 2
cluster j and level 3 cluster k.

Level 2 clusters are not nested within level 3 clusters

Examples:

Natural Nesting: Students performance scores are nested within
students and teachers. Students are nested within schools and
neighborhoods.
Design Nesting: Studies where observations are nested within
persons and treatments/situations.
Complex Sampling: Observations are nested within sampling
units and another variable unrelated to the sampling.
Generalizability theory: Items are considered a random sample
from a population of items.
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Cross-classified modeling

Why do we need to model both sets of clustering?

Discover the true predictor/explanatory effect stemming from the
clusters.

Ignoring clustering leads to incorrect standard errors.

Modeling with fixed effects leads to too many parameters and
less accurate model.
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Cross-classified model

General SEM model: 2-way ANOVA. Ypijk is the p−th variable
for individual i in cluster j and cross cluster k

Ypijk = Y1pijk +Y2pj +Y3pk

3 sets of structural equations - one on each level

Y1ijk = ν +Λ1ηijk + εijk

ηijk = α +B1ηijk +Γ1xijk +ξijk

Y2j = Λ2ηj + εj

ηj = B2ηj +Γ2xj +ξj

Y3k = Λ3ηk + εk

ηk = B3ηk +Γ3xk +ξk
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Cross - classified model

The regression coefficients on level 1 can be a random effects
from each of the two clustering levels: combines cross-classified
SEM and cross classified HLM

Bayesian MCMC estimation: used as a frequentist estimator.

Easily extends to categorical variables.

ML estimation possible only when one of the two level of
clustering has small number of units.
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Cross-classified model, example 1: Factor model

1 factor at the individual level and 1 factor at each of the
clustering levels, 5 indicator variables on the individual level

ypijk = µp +λ1,pf1,ijk +λ2,pf2,j +λ3,pf3,k + ε2,pj + ε3,pk + ε1,pijk.

M level 2 clusters. M level 3 clusters. 1 unit within each cluster
intersection. More than 1 unit is possible. Zero units possible:
sparse tables.

Estimation takes less than 1 min per replication
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Cross-classified model example 1: Factor model results

Table: Absolute bias and coverage for cross-classified factor analysis model

Param M=10 M=20 M=30 M=50 M=100
λ1,1 0.07(0.92) 0.03(0.89) 0.01(0.95) 0.00(0.97) 0.00(0.91)
θ1,1 0.05(0.96) 0.00(0.97) 0.00(0.95) 0.00(0.99) 0.00(0.94)
λ2,p 0.21(0.97) 0.11(0.94) 0.10(0.93) 0.06(0.94) 0.00(0.92)
θ2,p 0.24(0.99) 0.10(0.95) 0.04(0.92) 0.05(0.94) 0.02(0.96)
λ3,p 0.45(0.99) 0.10(0.97) 0.03(0.99) 0.01(0.92) 0.03(0.97)
θ3,p 0.75(1.00) 0.25(0.98) 0.15(0.97) 0.12(0.98) 0.05(0.92)
µp 0.01(0.99) 0.04(0.98) 0.01(0.97) 0.05(0.99) 0.00(0.97)

Perfect coverage. Level 1 parameters estimated very well. Biases
when the number of clusters is small M = 10. Weakly informative
priors can reduce the bias for small number of clusters.
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Cross-classified model, example 2: Gonzalez’s example

Gonzalez, De Boeck, Tuerlinckx (2008) A Double-Structure
Structural Equation Model for Three-Mode Data. Psychological
Methods, 337 - 353.

679 persons measured with respect to four emotional responses
(frustration, tendency to act antagonistically, irritation, and
anger) in a set of 11 situations

Observations are nested within individual and situations. One
observation in each crossed cell.

The dependent variables are 4 binary outcomes decomposed as
”person effect”+”situation effect”+”error”

y∗pjk = ypj + ypk + εpjk

Variances of εpjk is fixed to 1.
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Cross-classified model, example 2: Gonzalez’s example

2 sets of 4 random effects: 4 person effects and 4 situation
effects.

Identical structural model is estimated for the two-sets of random
effects.
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Cross-classified model, example 2: Gonzalez’s example
results

Para M=10 M=20 M=30 M=50 M=100
β1 0.13(0.92) 0.05(0.89) 0.00(0.97) 0.01(0.92) 0.01(0.94)

ψ2,11 0.11(1.00) 0.06(0.96) 0.01(0.98) 0.00(0.89) 0.02(0.95)
ψ2,12 0.15(0.97) 0.06(0.92) 0.05(0.97) 0.03(0.87) 0.01(0.96)

τ1 0.12(0.93) 0.01(0.93) 0.00(0.90) 0.03(0.86) 0.00(0.91)

Small biases for M = 10. Due to parameter equalities information is
combined from both clustering levels. Adding unconstrained level 1
model: tetrachoric correlation matrix.
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Random loadings and variance
models for cross-classified models
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Cross-classified model: random loadings and interactions

2-way ANOVA split, Ypijk is the p−th variable for individual i in
cluster j and cross cluster k

Ypijk = Y1pijk +Y2pj +Y3pk

3 sets of structural equations - one on each level - with random
loadings and latent variable interactions

Y1ijk = ν +Λ1ηijk + εijk +[[ηj ∗ηk]]

Y2j = Λ2ηj + εj

Y3k = Λ3ηk + εk

Λ1 can be fixed parameters or the latent variables defined on
either level ηj and ηk.
[[ ]] denote the interaction terms between Level 2 and Level 3
latent variables
Latent variables interaction for each pair of levels.
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Cross-classified model: Alternative interaction model

2-way ANOVA split with interaction

Ypijk = Y0pijk +Y1pjk +Y2pj +Y3pk

Raudenbush and Bryk (2002) equation (12.3)

The interaction term is represented by a latent variable Y1pjk: the
within cell (j,k) mean.

The model needs multiple observations in cell (j,k) to be able to
identify Y1pjk from Y0pijk

The model is equivalent to a factor analysis model with 1 factor
at level 1: Y1pjk, 1 factor at level 2: Y2pj, 1 factor at level 3: Y3pk.
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Cross-classified interaction model: Random items,
Generalizability theory

Items are random samples from a population of items.
The same or different items may be administered to individuals.
Suited for computer generated items and adaptive testing.
2-parameter IRT model

P(Yij = 1) = Φ(ajθi +bj)

aj ∼ N(a,σa), bj ∼ N(b,σb): random discrimination and
difficulty parameters
The ability parameter is θi ∼ N(0,1)
Cross-classified model. Nested within items and individuals. 1
or 0 observation in each cross-classified cell.
Interaction of two latent variables: aj and θi

The model has only 4 parameters - much more parsimonious
than regular IRT models.
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Random 2-parameter IRT example

J.P. Fox (2010) Bayesian Item Response Theory. Section 4.3.3.
Dutch Six Graders Math Achievement. Trends in International
Mathematics and Science Study: TIMMS 2007

8 test items, 478 students

Table: Random 2-parameter IRT

parameter estimate SE
average discrimination a 0.752 0.094

average difficulty b 0.118 0.376
variation of discrimination a 0.050 0.046

variation of difficulty b 1.030 0.760
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Random 2-parameter IRT example continued

Using factor scores estimation we can estimate item specific
parameter and SE using posterior mean and posterior standard
deviation.

Table: Random 2-parameter IRT item specific parameters

item discrimination SE difficulty SE
Item 1 0.797 0.11 -1.018 0.103
Item 2 0.613 0.106 -0.468 0.074
Item 3 0.905 0.148 -1.012 0.097
Item 4 0.798 0.118 -1.312 0.106
Item 5 0.538 0.099 0.644 0.064
Item 6 0.808 0.135 0.023 0.077
Item 7 0.915 0.157 0.929 0.09
Item 8 0.689 0.105 1.381 0.108

Tihomir Asparouhov and Bengt Muthén Mplus Mplus 34/ 47



Random 2-parameter IRT example comparison with ML

Table: Random 2-parameter IRT item specific parameters

Bayes random Bayes random ML fixed ML fixed
item discrimination SE discrimination SE

Item 1 0.797 0.110 0.850 0.155
Item 2 0.613 0.106 0.579 0.102
Item 3 0.905 0.148 0.959 0.170
Item 4 0.798 0.118 0.858 0.172
Item 5 0.538 0.099 0.487 0.096
Item 6 0.808 0.135 0.749 0.119
Item 7 0.915 0.157 0.929 0.159
Item 8 0.689 0.105 0.662 0.134

Bayes random estimates are shrunk towards the mean and have
smaller standard errors: shrinkage estimate
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Random 2-parameter IRT example continued

One can add predictor for person’s ability. For example adding
gender as a predictor yields an estimate of 0.283(0.120). Males
have a significantly higher math mean.

Predictors for discrimination and difficulty random effects, for
example, geometry indicator.

More parsimonious model can yield more accurate ability
estimates.

Tihomir Asparouhov and Bengt Muthén Mplus Mplus 36/ 47



Random Rasch IRT example

De Boeck P. (2008) Random item IRT models

24 verbal aggression items, 316 persons

P(Yij = 1) = Φ(θi +bj)

bj ∼ N(b,σ)

θi ∼ N(0,τ)

Table: Random Rasch IRT - variance decomposition

parameter person item error
τ σ

estimates(SE) 1.89(0.19) 1.46(0.53) 2.892
variance explained 30% 23% 46%
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Random Rasch IRT example: simple model specification

variable: categorical = y;

analysis: type = crossedrandom;

model:

%within%

%between person%
y;

%between item%
y;
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Application: Intensive longitudinal data

Time intensive data: more longitudinal data are collected that
makes very frequent observations using new tools for data
collection. Walls & Schafer (2006)
Typically multivariate models are developed but if the number of
time points is large these models will fail due to too many
variables and parameters involved
Factor analysis models will be unstable over time. Is it lack of
measurement invariance or insufficient model?
Random loading and intercept models can take care of
measurement and intercept invariance. A problem becomes an
advantage.
Random loading and intercept models produce more accurate
estimates for the loadings and factors by borrowing information
over time
Random loading and intercept models produce more
parsimonious model
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TOCA example: Intensive longitudinal data

Teacher-rated measurement instrument capturing
aggressive-disruptive behavior among a sample of U.S. students
in Baltimore public schools (Ialongo et al., 1999).

The instrument consists of 9 items scored as 0 (almost never)
through 6 (almost always).

A total of 1174 students are observed in 41 classrooms from Fall
of Grade 1 through Grade 6 for a total of 8 time points

The multilevel (classroom) nature of the data is ignored in the
current analyses.

The item distribution is very skewed with a high percentage in
the Almost Never category. The items are therefore
dichotomized into Almost Never versus the other categories
combined.

We analyze the data on the original scale as continuous variables
and also the dichotomized scale as categorical

Tihomir Asparouhov and Bengt Muthén Mplus Mplus 40/ 47



TOCA example continued

For each student a 1-factor analysis model is estimated with the 9
items at each time point

Let Ypit be the p−th item for individual i at time t

We use cross-classified SEM. Observations are nested within
individual and time.

Although this example uses only 8 time points the models can be
used with any number of time points.
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TOCA example continued: Model 1

Model 1: Two-level factor model with intercept non-invariance
across time

Ypit = µp +ζpt +ξpi +λpηit + εpit

µp, λp are model parameters, εpit ∼ N(0,θw,p) is the residual
ζpt ∼ N(0,σp) is a random effect to accommodate intercept
non-invariance across time
To correlate the factors ηit within individual i

ηit = ηb,i +ηw,it

ηb,i ∼ N(0,ψ) and ηw,it ∼ N(0,1). The variance is fixed to 1 to
identify the scale in the model.
ξpi ∼ N(0,θb,p) is a between level residual in the between level
factor model
Without the random effect ζpt this is just a standard two-level
factor model.
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TOCA example continued: Model 2

Model 2: Adding latent growth model for the factor

ηit = αi +βi ∗ t+ηw,it

αi ∼ N(0,vα) is the intercept and βi ∼ N(0,vβ ) is the slope. For
identification purposes again ηw,it ∼ N(0,1).

The model looks for developmental trajectory across time for the
aggressive-disruptive behavior factor

Such a trend trajectory much less likely to hold across the entire
population, i.e., the model parameters µp can be restricted
through a linear trend but much less likely to hold true(µp have
small SE and linear trend will be rejected).
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TOCA example continued: Model 3

Model 3: Adding measurement non-invariance.

Replace the fixed loadings λp with random loadings
λpt ∼ N(λp,wp)

The random loadings accommodate measurement non-invariance
across time.

We estimate Model 3 for continuous and categorical scale on the
TOCA data
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TOCA example continued: Results for continuous analysis.
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TOCA example continued: Results for categorical analysis.
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Conclusion

Bayesian methods solve problems not feasible with ML or WLS

Mplus Version 7 includes also 3-level SEM/MHLM for
continuous and categorical with ML and Bayes

Mplus Version 7: August 2012

Mplus short courses Utrecht August 27-29

Tihomir Asparouhov and Bengt Muthén Mplus Mplus 47/ 47


