Dynamic prediction using joint models for recurrent and terminal events: *Evolution after a breast cancer*

A. Mauguen *, B. Rachet **, S. Mathoulin-Pélissier *, S. Siesling***, G. MacGrogan ****, A. Laurent *, V. Rondeau*

* INSERM U897, Bordeaux ** London School of Hygiene and Tropical Medicine, London *** Integraal Kankercentrum Netherlands **** Institut Bergonié, Bordeaux

2 December 2013, London

Introduction

After a breast cancer diagnosis

 \rightarrow single or multiple events (recurrences, metastases, death)

Introduction

After a breast cancer diagnosis

 \rightarrow single or multiple events (recurrences, metastases, death)

Prediction of death

- ightarrow clinical therapeutic decisions, and patient monitoring
- \rightarrow patient information
- \rightarrow trials : defining patient subpopulations

Introduction

After a breast cancer diagnosis

 \rightarrow single or multiple events (recurrences, metastases, death)

Prediction of death

- \rightarrow clinical therapeutic decisions, and patient monitoring
- \rightarrow patient information
- \rightarrow trials : defining patient subpopulations

Account for

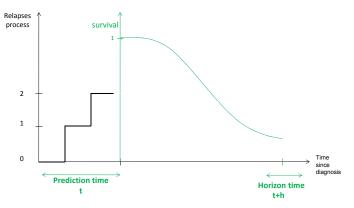
- \rightarrow individual characteristics
- \rightarrow tumour characteristics
- \rightarrow previous treatments

 \rightarrow evolution of longitudinal markers (*Rizopoulos, 2011 ; Proust-Lima 2009*)

Introduction : Motivating example

- Cohort of patients with operable breast cancer
- Treated in a comprehensive cancer centre and followed 13.9 years (median)
- Recurrent events observed : loco-regional relapses, distant metastases ; until 3 events per patient
- Hypothesis : individual covariates but also recurrent event process may improve prediction of death risk

Objective To predict the risk of death between time t and t + h given the recurrent event process before time t in the context of joint modelling



Joint Models

- Recurrent events and death processes are potentially correlated
- Standard (naive) approach of Cox with time-dependent covariate only for external covariates !
- Interest :
 - investigating the strength of association between recurrent events and death
 - allows to study impact of **covariates both** on recurrent events and death
 - treat informative censoring by death

Joint models : some notations

- *t* time of prediction and *h* window of prediction
- D_i time of death for subject i, i = 1, ..., n
- X_{ij} time of the *jth* recurrence for subject *i*
- Z_{ii}^{R} and Z_{i}^{D} covariates vectors for recurrence and death
- λ_{ii}^R and λ_i^D baseline hazards for risk of recurrence or death

Joint models

Joint modelling for the risk of recurrent event (disease relapses) and terminal event (death)

$$\begin{cases} \lambda_{ij}^{R}(t|u_{i}) = u_{i}\lambda_{0}^{R}(t)\exp(\beta_{1}^{\prime}Z_{ij}^{R})\\ \lambda_{i}^{D}(t|u_{i}) = u_{i}^{\alpha}\lambda_{0}^{D}(t)\exp(\beta_{2}^{\prime}Z_{i}^{D}) \end{cases}$$

- calendar timescale (time from origin)
- $u_i \sim \Gamma(1/\theta; 1/\theta)$, i.e. $E(u_i) = 1$ and $var(u_i) = \theta$
- θ dependency between recurrent events and death
- α sense and strength of the association (more flexibility)

Liu et al. Biometrics 2004 ; Rondeau et al. Biostatistics 2007

Inference in the joint model

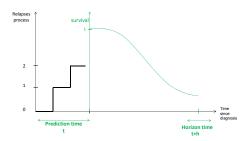
Penalized log-likelihood :

- smooth baseline hazard functions
- approximated by cubic M-splines

$$pI(\xi) = I(\xi) - \kappa_1 \int_0^\infty (\lambda_0^R(t))^{\prime\prime 2} \mathrm{d}t - \kappa_2 \int_0^\infty (\lambda_0^D(t))^{\prime\prime 2} \mathrm{d}t$$

With the vector of parameters : $\zeta = (\lambda_0^D(.), \lambda_0^R(.), \beta, \alpha, \theta)$ and κ_1 and κ_2 two smoothing parameters for the baseline hazard functions

- Consider a new subject *i* free of death at time *t* (i.e. *D* > *t*), for whom we observe *j* recurrences before *t* and for whom the vector of covariates Z^R_{ij} and Z^D_{ij} are available at time of prediction
- The history of recurrences for patient *i* until time *t* is :



$$\mathcal{H}_i^J(t) = \{N_i^R(t) = J, X_{i1} < \ldots < X_{iJ} \leq t\}$$

Dynamic prediction Distinguish two settings for the probability of death

Setting 1 t+h Exactly 3 recurrent events before t $\times \times \times$ ⊢t t+h Setting 2 _____ Whatever the history of recurrent events before t × Recurrent event Window of prediction of death Period where we consider what happens Period where we do not consider what happens

Setting 1 : with exactly *j* recurrences before *t*

 $P^{1}(t, t+h; \xi) = P(D_{i} \leq t+h|D_{i} > t, \mathcal{H}_{i}^{J,1}(t), Z_{ij}^{R}, Z_{i}^{D}, \xi)$ = $\frac{\int_{0}^{\infty} [S_{i}^{D}(t|Z_{i}^{D}, u_{i}, \xi) - S_{i}^{D}(t+h|Z_{i}^{D}, u_{i}, \xi)](u_{i})^{J}S_{i(J+1)}^{R}(t|Z_{ij}^{R}, u_{i}, \xi)g(u_{i})du_{i}}{\int_{0}^{\infty} S_{i}^{D}(t|Z_{i}^{D}, u_{i}, \xi)(u_{i})^{J}S_{i(J+1)}^{R}(t|Z_{ij}^{R}, u_{i}, \xi)g(u_{i})du_{i}}$

and $\mathcal{H}_i^{J,1}(t) = \{N_i^R(t) = J, X_{i1} < \ldots < X_{iJ} \le t\}$, with $X_{i0} = 0$ and $X_{i(J+1)} > t$

Setting 1 : with exactly *j* recurrences before *t*

 $P^{1}(t,t+h;\xi) = P(D_{i} \leq t+h|D_{i} > t,\mathcal{H}_{i}^{J,1}(t),Z_{ij}^{R},Z_{i}^{D},\xi)$ = $\frac{\int_{0}^{\infty} [S_{i}^{D}(t|Z_{i}^{D},u_{i},\xi) - S_{i}^{D}(t+h|Z_{i}^{D},u_{i},\xi)](u_{i})^{J}S_{i(J+1)}^{R}(t|Z_{ij}^{R},u_{i},\xi)g(u_{i})\mathrm{d}u_{i}}{\int_{0}^{\infty} S_{i}^{D}(t|Z_{i}^{D},u_{i},\xi)(u_{i})^{J}S_{i(J+1)}^{R}(t|Z_{ij}^{R},u_{i},\xi)g(u_{i})\mathrm{d}u_{i}}$

and $\mathcal{H}_{i}^{J,1}(t) = \{N_{i}^{R}(t) = J, X_{i1} < \ldots < X_{iJ} \le t\}$, with $X_{i0} = 0$ and $X_{i(J+1)} > t$ Example :

"Up to now Mrs Martin has developed 3 recurrences of her initial cancer, her probability of dying in the next 5 years is x%"



Setting 2 : considering the recurrence history only in the parameters estimation

$$P^{2}(t, t + h; \xi) = P(D_{i} \leq t + h|D_{i} > t, Z_{i}^{D}, \xi)$$
$$= \frac{\int_{0}^{\infty} [S_{i}^{D}(t|Z_{i}^{D}, u_{i}, \xi) - S_{i}^{D}(t + h|Z_{i}^{D}, u_{i}, \xi)]g(u_{i})du_{i}}{\int_{0}^{\infty} S_{i}^{D}(t|Z_{i}^{D}, \xi, u_{i})g(u_{i})du_{i}}$$

Setting 2 : considering the recurrence history only in the parameters estimation

$$P^{2}(t, t + h; \xi) = P(D_{i} \leq t + h|D_{i} > t, Z_{i}^{D}, \xi)$$
$$= \frac{\int_{0}^{\infty} [S_{i}^{D}(t|Z_{i}^{D}, u_{i}, \xi) - S_{i}^{D}(t + h|Z_{i}^{D}, u_{i}, \xi)]g(u_{i})du_{i}}{\int_{0}^{\infty} S_{i}^{D}(t|Z_{i}^{D}, \xi, u_{i})g(u_{i})du_{i}}$$

Example :

" her probability of dying in the next 5 years is x%" " if still alive in 5 years, her probability of dying over the next 5 years will be x%"

> Whatever the history of recurrent events before t

Dynamic prediction : variability of the probability estimators

by Monte Carlo :

■ at each *b* step (b=1,...,B=1000) : $\hat{\xi} = (\widehat{\lambda_0^R(.)}, \widehat{\lambda_0^D(.)}, \hat{\beta}, \hat{\alpha}, \hat{\theta})$ from $\mathcal{MN}(\hat{\xi}, \hat{\Sigma}_{\xi})$. estimate $P^b(t, t + h; \hat{\xi})$

Percentile confidence interval : using the 2.5th and the 97.5th percentiles

Dynamic prediction : Error of prediction Based on a weighted estimator of a time-dependent Brier Score (IPCW error)

$$Err_{t+h} = \frac{1}{N_t} \sum_{i=1}^{N_t} [I(T_i^D > t+h) - (1 - \hat{P}(t, t+h; \hat{\xi}))]^2 \hat{w}_i(t+h, \hat{G}_N(.))$$

with

$$w_{i}(t+h,\hat{G}_{N}(.)) = \frac{I(T_{i}^{D} \leq t+h)\delta_{i}^{D}}{\hat{G}_{N}(T_{i}^{D})/\hat{G}_{N}(t)} + \frac{I(T_{i}^{D} > t+h)}{\hat{G}_{N}(t+h)/\hat{G}_{N}(t)}$$

 T_i^D = observed survival time ; δ_i = event indicator N_t =patients alive and uncensored at t $\hat{G}_N(t)$ = KM estimate or adjusted Cox estimate of the censoring distribution Validated by a 10-fold cross-validation *Brier. Monthly Weather Review 1950 - Gerds et al. Biometrical J 2006*

Dynamic prediction : Error of prediction

To be able to compare different populations : residual error R^2

$$R^2 = 1 - Err_{t+h}/Err_{t+h}^0$$

with Err_{t+h} as previously defined Err_{t+h}^{0} the prediction error from a Kaplan-Meier model (average survival predicted for each patient)

Graf. Stat Med 1999

Application

1. On the French cohort

Development cohort

- Model development
 - Variable selection
 - Parameters estimation
- Internal validation of the prediction
 - Apparent error
 - Cross-validated error

French cohort

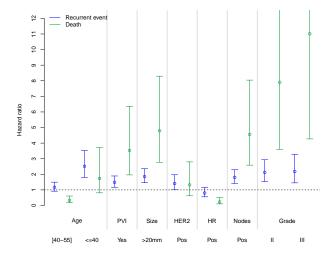
- 1067 patients
- median follow-up : 13.8 years (min=5 months)
- 427 recurrent events (locoregional relapses and distant metastases) in 362 patients (mean 0.40)

N events	0	1	2	3	All
Alive	600	114	20	3	737
Died	105	187	37	1	330
All	705	301	57	4	1067

with the R package frailtypack

http://cran.r-project.org/web/packages/frailtypack/

Prognostic joint model



 θ =1.03 (se=0.06) and α =4.66 (se=0.28)

Prediction values between 5 and 10 years

Recurrence history	$P^{Recurrence}(5, 10; \hat{\xi})$	$P^{lgnoring}(5,10;\hat{\xi})$
No recurrence	10.8 (4.2)	12.7 (4.5)
One recurrence	30.3 (8.9)	12.7 (4.5)
Two recurrences	50.6 (11.4)	12.7 (4.5)
Three recurrences	67.4 (11.9)	12.7 (4.5)

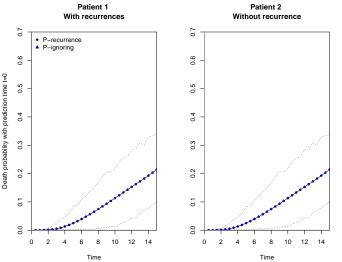
For a given patient : age > 55y, no PVI, size \leq 20mm, HER2 negative, HR positive, no lymph node involvement, grade II.

Prediction values between 5 and 15 years

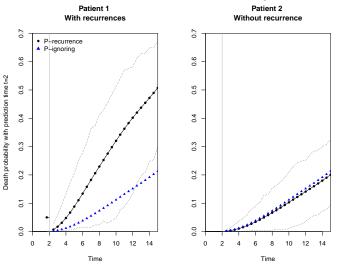
Recurrence history	$P^{Recurrence}(5, 15; \hat{\xi})$	$\mathcal{P}^{lgnoring}(5,15;\hat{\xi})$
No recurrence	22.7 (4.8)	25.6 (4.7)
One recurrence	53.0 (6.9)	25.6 (4.7)
Two recurrences	75.6 (6.0)	25.6 (4.7)
Three recurrences	88.4 (4.1)	25.6 (4.7)

For a given patient : age > 55y, no PVI, size \leq 20mm, HER2 negative, HR positive, no lymph node involvement, grade II.

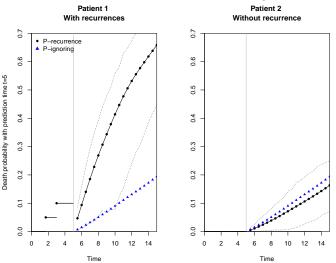
 $\between 40 and 55 \text{ y, no peritum. vasc. invasion, tumour size $\leq 20 mm, HER2 -, HR +, no lymph node involv., grade II $= 100 mm, 100 mm,$



Prediction time t=2 years

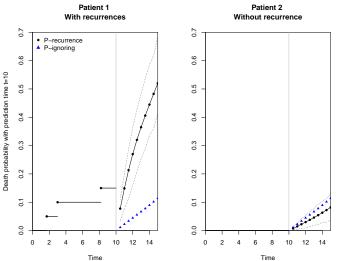


Prediction time t=5 years

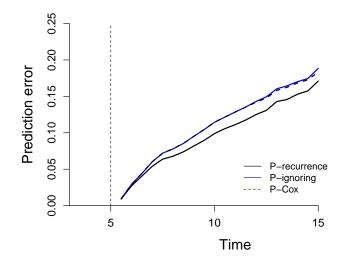


24/50

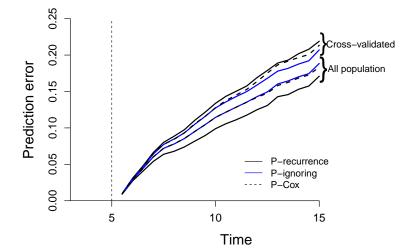
Prediction time t=10 years



Death prediction error Prediction at 5 years (949 patients alive)

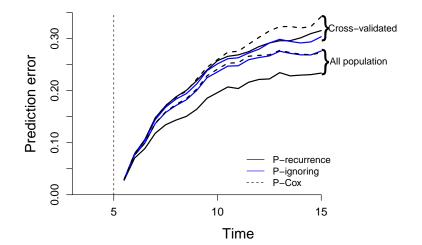


Prediction error Prediction at 5 years (949 patients alive), with 10-fold cross-validation



Prediction error

Prediction at 5 years (267 patients alive with recurrence), with 10-fold cross-validation



At this step

- Found the prognostic factors of interest
- Estimated parameters (factor effects, correlation between the two endpoints)
- Were able to account for relapses in the prediction of the risk of death
- Not clear whether accounting for relapses has an interest for prediction

Application

2. External validation

External validation - why?

- Model designed to perform well on development data
 - problem with the design or methods
 - absence of an important predictor
- To check the reproducibility of the model and predictions
 - overfitting
 - ightarrow correct for optimism
 - difference case-mix
- To update the proposed prognostic model

Models to be compared

- Joint frailty model
 - + One model \rightarrow dynamic prediction
 - + Correlation between the two processes fully accounted for
 - more parameters \rightarrow less stability
- Landmark Cox model
 - + Robust and simple model
 - + Time-dependent effects
 - One model for each prediction time t
 - Information about recurrent events : number of recurrent events

Populations - description

West Midlands

- 1196 subjects
- Diagnosed in 1996
- Follow-up : 16 years
- 376 relapses in 301 patients (mean=0.31)
- 613 deaths (51%)

Dutch registry

- 31,075 subjects
- Diagnosed in 2003-2006
- median follow-up : 7.7 y
- 3854 relapses in 3844 patients (mean=0.12)
- 7162 deaths (23%)

Populations - missing data

- Missing data problem not much discussed in the literature in that context
- Not an effect estimation problem
- Clinical point of view
 - \rightarrow complete case analysis

West Midlands

- 1196 subjects
- from 3168 cases (38%)
- HER2 and hormonal receptor unavailable

Dutch registry

- 31,075 subjects
- from 41,676 cases (75%)
- HER2 and hormonal receptor unavailable
- Perivascular invasion unavailable

Populations - Relapses definitions

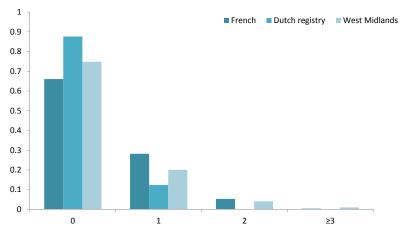
West Midlands

- Recurrence defined from treatment
- 376 relapses
 - □ 22% <2 years
 - 59% <5 years</p>

Dutch registry

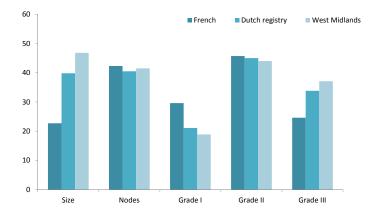
- Recurrences recorded (only the 1st one of each type)
- 3854 relapses
 - 41% <2 years</p>
 - □ 93% <5 years

Populations - recurrent event

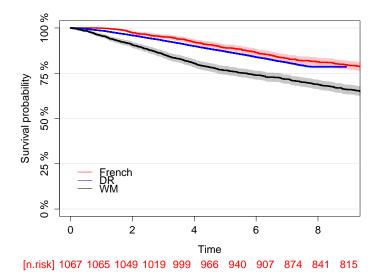


36/50

Populations - prognostic factors



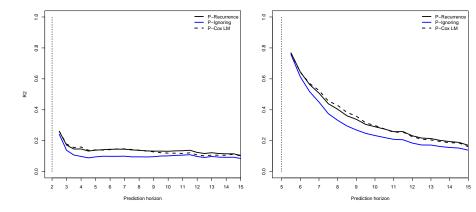
Populations - overall survival



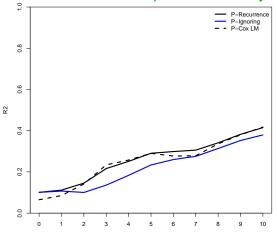
38/50

t=2 years

t=5 years

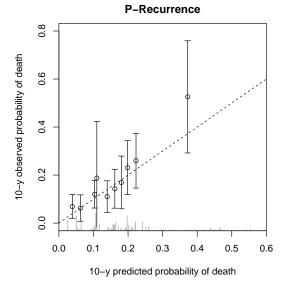


Fixed window of prediction h=5 y

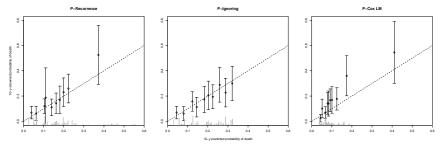


Prediction time

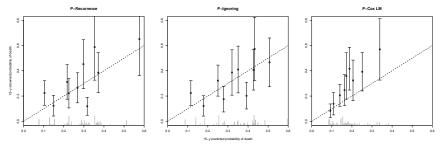
West Midlands population - Calibration at 10 years (t=5 years)



Calibration at 10 years (*t*=5 years)

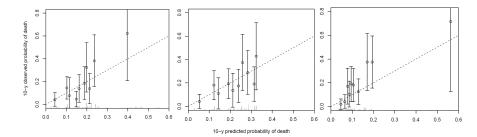


Calibration at 15 years (*t*=5 years)



Subgroup analysis

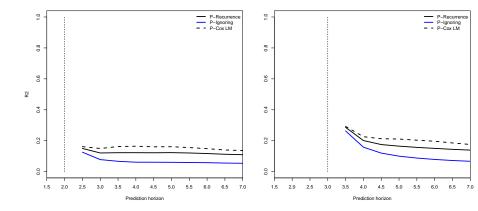
West Midlands population - operated patients



Dutch population

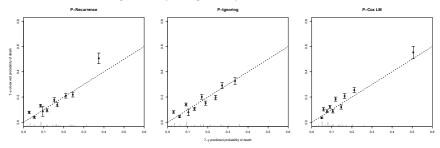
t=2 years

t=3 years



Dutch population

Calibration at 7 years (*t*=2 years)



At the end

- Relapses information is useful to predict the death of patients with breast cancer
- The more information, the better relapses information prior to 2-3 years not enough
- Two approaches (joint and landmark) give similar performance

 \rightarrow Do not be afraid to use complex model (with more parameters) in prediction if needed

At the end

- The model estimated on a selected cohort of patients can be useful in more general populations
 - Good performance in West Midlands population despite
 - a different survival in the population
 - a different period of inclusion
 - a different case-mix
 - Prediction not good in Dutch registry patients
 - Short follow-up
 - Patient recently diagnosed impact of change in the clinical practice ?

And then?

 Considering the type of recurrence
Different effect of loco-regional relapse and metastasis on the risk of death

Predict the risk of recurrence

For example, risk of metastasis considering the previous loco-regional relapses

References

- Liu et al. (2004). Shared frailty models for recurrent events and a terminal event. *Biometrics*

- Rondeau et al. (2007). Joint frailty models for recurring events and death using maximum penalized likelihood estimation : application on cancer events. *Biostatistics*

- Mauguen et al. (2013). Dynamic prediction of risk of death using history of cancer recurrences in joint frailty models *Stat Med*

- Gerds et al. (2006). Consistent estimation of the expected brier score in general survival models with right-censored event times. *Biometrical J*

- Proust-Lima et al. (2009). Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA : a joint modeling approach. *Biostatistics*

- Rizopoulos et al. (2011) Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. *Biometrics*

- Rondeau V, and Gonzalez, JR. (2012) FRAILTYPACK : An R package for the analysis of correlated data with frailty models using the penalized likelihood estimation. *JSS*.

http://cran.r-project.org/web/packages/**frailtypack**/ http://cran.r-project.org/web/packages/pec/

Supported by : Institut National du Cancer and Institut Bergonié