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The (Classic) Multi-armed Bandit Problem

£Y1,t £Y2,t . . . £YK ,t

Maximise total expected gains over time:

learn about the success rates of the slot machines
just enough to maximise average total profit



The Learning-Earning Dilemma
An ethical Problem in Clinical Trails

Although their scope is much more general, the most common scenario
chosen to motivate the MABP in the literature is that of a clinical trial
which has the aim of balancing two separate goals:

G1 To correctly identify the best treatment (learning).

G2 To best (most effectively) treat as many patients as possible
(earning).

Traditional clinical trials are designed to meet requirements on error
probabilities, which relates to the learning element of this dilemma.

The ethical conflict around these goals becomes more acute (suboptimality
gap grows) when: the population with a disease is small, the disease is
life-threatening and/or there are multiple potential treatments to study.



Trial design as a (classic) Multi-armed Bandit Problem

Y1,t Y2,t . . . YK ,t

Maximise total expected patient benefit over time:

learn about the treatments’ efficacy just enough to maximise
patients’ outcomes over the population



Theoretical work (a sample of it)
Optimality in Clinical Trials I

Optimality in terms of patient benefit (70’s 80’s)

• “A procedure which maximizes the expected number of successes in a
clinical trial involving two treatments can usually be found only by
backward induction.” Berry, D.A. (1978)

• “Multi-armed bandit problems are similar, but with more than two
arms. Their chief practical motivation comes from clinical trials”
Gittins and Jones (1979)

• “The number of observations needed to obtain a given level of
precision can be minimized by using a fixed-sample rule, but this
involves too many applications of the inferior treatment. ...
sequential allocation rules can achieve a similar pattern of error
probabilities for a small fraction of the expected cost to the
volunteers ” Bather, J. (1985)



Theoretical work (a sample of it)
Optimality in Clinical Trials II

Optimality in terms of patient benefit (from 2000’s and from the 30’s!)

• The optimal sample size of a 2-armed RCT (optimal in terms of
patient benefit) is ∝ the square root of the size of the total patient
population (

√
N). Cheng et al (2003)

• Suggested to randomise patients with a probability ∝ the posterior
probability of an arm being superior than the other. “This would be
important in cases where either the rate of accumulation of data is
slow or the individuals treated are valuable, or both. ”
Thompson, W. (1933)



Optimality in Clinical Trials III
Theory and Practice

Armitage (1985):

“Yet most of the theoretical work done in this tradition, over the last 20
years or so, has found no application whatsoever in the actual conduct of
trials. This lack of contact between theory and practice seems to
me quite deplorable. Either the theoreticians have got hold of the wrong
problem, or the practising triallists have shown a culpable lack of
awareness of relevant theoretical developments, or both. In any case, the
situation does not reflect particularly well on the statistical community”
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The Curse of Dimensionality
MABP and Computational Feasibility

• Solution to the MABP according to Bellman’s principle of optimality
exists but is computationally expensive. Prohibitively so for most
realistic scenarios.

• The curse of dimensionality was (till early 80’s) the single most
important limitation to its applicability in practice (in any context).

Armitage (1985):

“The problem can now be seen as essentially the ’two-armed bandit’
problem for a finite horizon. The solution to this can in principle be
obtained by dynamic programming methods, but in practice the
computation involved is prohibitive except for trivially small horizons.”



The Gittins Index: Divide and Conquer!
Classic MABP & Infinite Horizon Case

Theorem (’74, ’79, ’89): The Expected Total (discounted) Reward is
maximised by playing at each time t the machine having the largest
“dynamic allocation index”: Gk(sk,t , fk,t) (some values in Table below).

f0/s0 1 2 3 4 5 6

1 0.8699 0.9102 0.9285 0.9395 0.9470 0.9525

2 0.7005 0.7844 0.8268 0.8533 0.8719 0.8857

3 0.5671 0.6726 0.7308 0.7696 0.7973 0.8184

4 0.4701 0.5806 0.6490 0.6952 0.7295 0.7561

5 0.3969 0.5093 0.5798 0.6311 0.6697 0.6998

6 0.3415 0.4509 0.5225 0.5756 0.6172 0.6504

The Gittins indices (GI) for different (s0, f0) pairs (Gittins and Jones,
1979; Gittins et al., 2011) → Huge computational gains!



The Gittins index for a clinical trial
An example of the index rule in practice

Time Gittins Index Allocation Prob. Action Outcome Patient

t G0 G1 P(a0,t = 1) P(a1,t = 1) a0,t a1,t Yk∗,t No.

0 0.8699 0.8699 1/2 1/2 0 1 Y1,1 = 1 1
1 0.8699 0.9102 0 1 0 1 Y1,2 = 0 2
2 0.8699 0.7844 1 0 1 0 Y0,3 = 1 3
3 0.9102 0.7844 1 0 1 0 Y0,4 = 1 4
4 0.9285 0.7844 1 0 1 0 Y0,5 = 0 5
5 0.8268 0.7844 1 0 1 0 . . . 6
6 . . . . . . . . . . . . . . . . . . . . . 7

Treatment decisions using the Gittins indices in a 2-arm trial example

H0 : p0 = p1 = 0.3 H1 : p0 = 0.3 , p1 = 0.5
α p∗ (s.e.) ENS (s.e.) 1− β p∗ (s.e.) ENS (s.e.)

FR 0.052 0.500 (0.04) 44.3 (5.6) 0.809 0.501 (0.04) 59.2 (6.0)
GI 0.053 0.501 (0.26) 44.4 (5.6) 0.364 0.862 (0.11) 70.2 (7.1)
UB 44.4 (0.0) 1 74.0 (0.0)

Comparison of the OCs of different two-arm trial designs of size T = 148. α: type I error; 1 − β: power; p∗: expected
number of patients assigned to best treatment; ENS: expected number of patient successes; UB: upper bound.



The Gittins index for a clinical trial
An example of the index rule in practice

Time Gittins Index Allocation Prob. Action Outcome Patient

t G0 G1 P(a0,t = 1) P(a1,t = 1) a0,t a1,t Yk∗,t No.

0 0.8699 0.8699 1/2 1/2 0 1 Y1,1 = 1 1
1 0.8699 0.9102 0 1 0 1 Y1,2 = 0 2
2 0.8699 0.7844 1 0 1 0 Y0,3 = 1 3
3 0.9102 0.7844 1 0 1 0 Y0,4 = 1 4
4 0.9285 0.7844 1 0 1 0 Y0,5 = 0 5
5 0.8268 0.7844 1 0 1 0 . . . 6
6 . . . . . . . . . . . . . . . . . . . . . 7

Treatment decisions using the Gittins indices in a 2-arm trial example

H0 : p0 = p1 = 0.3 H1 : p0 = 0.3 , p1 = 0.5
α p∗ (s.e.) ENS (s.e.) 1− β p∗ (s.e.) ENS (s.e.)

FR 0.052 0.500 (0.04) 44.3 (5.6) 0.809 0.501 (0.04) 59.2 (6.0)
GI 0.053 0.501 (0.26) 44.4 (5.6) 0.364 0.862 (0.11) 70.2 (7.1)
UB 44.4 (0.0) 1 74.0 (0.0)

Comparison of the OCs of different two-arm trial designs of size T = 148. α: type I error; 1 − β: power; p∗: expected
number of patients assigned to best treatment; ENS: expected number of patient successes; UB: upper bound.



The Gittins Index for a Clinical Trial
Beyond the Computational Limitation...

Gittins (1979)
“Their chief practical motivation comes from clinical trials... ”

Despite being computationally feasible for multi-armed trials (and simpler
than DP to summarise), index rules have not been applied to a trial yet.

Important barriers to its use in practice include (Villar et al, 2015a):

(1) Its fully sequential nature: outcomes must be immediately available.

(2) Decisions are not randomized: treatment allocation bias, covariate
imbalance. Basis for inference.

(3) Given an objective degree of discrimination between two treatments,
it lacks a sufficient/comparable level of statistical power.

(4) It does not incorporate potentially important prognostic covariates.

(5) Others: bias in estimation of treatment effect (overestimation of
treatment effect), the effect of patient drift, etc.
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The Forward Looking Gittins Index
Introducing Randomization to the Gittins Index Rule

Assume that T patients are enrolled sequentially in groups of size b over
J stages, so that J × b = T . In Villar et al (2015b) we defined group
allocation probabilities based on the GI as follows:
Simplest example: b = 2. Priors: control (s(0,0), f(0,0)) = (1, 2) and experimental (s(1,0), f(1,0)) = (1, 1)

j = 1,
G1(1, 1) = 0.8699
G0(1, 2) = 0.7005

j = 2,
G1(1, 2) = 0.7005
G0(1, 2) = 0.7005

1
2

Y1,0 = 0

j = 2,
G1(2, 1) = 0.9102
G0(1, 2) = 0.7005

1
2

Y1,0
= 1

What is the (patient-average) probability of each arm being allocated in the next block using the GI (and given the priors)?

π1,0 =
(0 × 1) + (0 × 1/2 + 1/2 × 1/2)

2
= 1/8 , π1,1 =

(1 × 1) + (1 × 1/2 + 1/2 × 1/2)

2
= 7/8.
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FLGI Probabilities: Computation & Properties
A Non-myopic Group Randomised Procedure

C Just as for the MABP, the computational cost of the exact FLGI
probabilities grows with the number of arms (K ) and b (block size).

Computation in practice can be done via Monte Carlo simulation.
Example: P = [1 1 ; 2 1 ; 1 2 ; 2 2] (K = 4) and block b = 9 then
π ≈ [0.2646 ; 0.5901 ; 0.0246 ; 0.1208] after 5 ∗ 102 replicas.

P1 For equal priors the algorithm defines equal allocation probabilities.

P2 As the block size tends to grow (in the limit it equals the trial size),
the design tends to a balanced design (given initial equipoise).

P3 If the block is of only 1 patient (i.e. there is an interim after every
patient), the FLGI rule recovers the GI rule.
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The FLGI in Practice
Example: Redesigning a Real Trial

NeoSphere is a 4-arm ER trial in breast cancer with 417 patients.
The response rates reported were 29.0%, 45.8%, 16.8% and 24.0%.

H1 : p1 = [0.29 0.458 0.168 0.24]
Power Patient Benefit

(1− β) p∗ (s.e.) ENS (s.e.)

ER (block=417) 0.653 0.250 (0.02) 120.88 (9.34)

FLGI (block=9) 0.177 0.804 (0.09) 174.11 (13.3)
GI (block=1) 0.140 0.840 (0.10) 177.97 (13.0)

UB 1 190.99 (0.00)

with the πk,j probabilities computed via Monte Carlo simulation.

• Effects of randomisation: (slight) increase in power/ (slight)
reduction in ENS (patient benefit)

• Increase power levels: apply FLGI to experimental arms only.
Allocation to control arm fixed at FR level (25%) (Trippa et al, 2012)
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Tailoring Treatment to Patients’ Characteristics
The Personalised Medicine & Big Data Challenge

• FDA has recently approved several cancer drugs for use in patients
whose tumours have specific genetic characteristics.

• This has strengthened the promise of“personalised medicine”- the
tailoring of treatment to the individual characteristics of each patient.

How can trials find treatments that work for a subgroup of patients?

• The challenge is on how to do so in contexts in which there are
several promising treatments and relatively few patients to test them
- even fewer if a treatment works only within a subgroup.

• Some recent trials have used covariate-adjusted response-adaptive
(CARA) randomisation (Rosenberger et al, 2001) to more quickly
identify superior treatments among several, mainly treatments that
work better within subgroups. E.g., I-SPY II or BATTLE trial.



Incorporating Covariate Information to the Gittins Index
Increasing Patient Benefit by Personalising Treatment

MABP with covariates: let patient outcome Yk,t ∼ Bernoulli(pk(zt))
where Zt ∼ Bernoulli(q) (with q known).

E.g., pk(zn) = Expit (αk + βkzt) ∀t, where Expit(u) = exp(u)
1+exp(u) .

For patient t, we observe their covariate value zt then we treat them.

• Associated MABP with Dynamic Programming: computational
complexity even larger than in the classic case. (Deterministic)

Q: Can we define a simple index rule in this case? Little work in the
literature: Clayton ’89; Woodroofe ’79

• Villar and Rosenberger (2017) proposed a heuristic (extended) Gittins
index rule for a binary endpoint with a discrete covariate with C levels.



The MABP with covariates and the CARA FLGI
Summary of how the non-myopic CARA procedure is derived

(1) We consider a MABP with K experimental arms, a control arm and
T patients. Before arm k is allocated to patient t, a binary covariate
Zt is observed. Immediately after, a binary response Yt,n is observed.

(2) Reformulate the above MABP: for every treatment-covariate
combination there exists a combination arm kz . E.g., the arm “00”
corresponds to the control arm and covariate negative patients.

New reformulated MABP has 2 (K + 1) combinations arms (with rate
pkt) and patients are optimally allocated to arms with the constraint
that they are only allowed arms feasible given their biomarker profile.

(3) We defined a modified GI rule: each patient gets the treatment with
the highest GI among the arms available for their biomarker profile.

(4) From this modified GI, a randomised group allocation procedure is
defined as in Villar et al (2015b) but for every covariate value (and
block) we have a different vector of allocation probabilities πk,j(Z ).



The CARA FLGI in Practice
Simulation Results

3-arm trial 300 patients pk0 = (0.22; 0.34; 0.49), pk,1 = (0.47; 0.71; 0.37).
Treatment-covariate interaction: best arm for covariate negative patients
is arm 2 while for covariate positive patients is arm 1.

Power Patient Benefit
(1− β0) (1− β1) p∗0 (s.d) p∗1 (s.d) ENS (s.d)

ER (b=300) 0.82 0.63 0.33 (0.04) 0.33 (0.04) 130.71 (9.3)
CARA CFLGI (b=10) 0.85 0.79 0.55 (0.16) 0.62 (0.06) 148.36 (9.6)

CARA FLGI (b=10) 0.13 0.03 0.75 (0.22) 0.86 (0.16) 166.73 (11.2)
CARA GI (b=1) 0.11 0.03 0.78 (0.24) 0.88 (0.18) 169.39 (11.4)

CARA FLGI probabilities (Monte Carlo simulation), T = 300, pz = 0.5 and 5000 runs.

• Treatment-covariate interactions are detected by the CARA
(Covariate-Adjusted Response Adaptive) FLGI procedure but its
statistical power is very low.

• In a multi-armed case the CARA CFLGI addresses the power
limitation (though in a two-arm setting power may be insufficient).
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Closing Discussion
Opportunities & Remaining Challenges

Armitage (1985)

“I close with two specific suggestions: first, that statisticians concerned
with the development of optimization models and those concerned directly
in clinical trials should meet to discuss the feasibility of these methods
for various sorts of trials; secondly, that members of the two groups
should work in collaboration on specific trials so as to foster closer
understanding and to explore the possibilities in a realistic setting.”

• Designing implementable optimal designs still requires dialogue
between theory and practice. Such a dialogue can potentially result
in sound solutions for the current challenges in clinical trials.

• Explicitly including patient benefit as an optimisation goal can
greatly improve trials. Reporting on patient benefit properties of
designs should become as standard as reporting expected error rates.
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What do we mean by computational infeasibility
Source: Don Berry’s presentations

State space & Dynamic Programming for T=7

Dynamic 
program-
ming for  

N = 100 and 
n = 7: 

Today

New state
after fail
on arm B

New state
after succ.
on arm B

Use arm B

Use arm A

New state
after fail
on arm A

New state
after succ.
on arm A



Earn-learn dilemma and block size
How to select block size? Should we ramp up accrual?
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