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The 5 Challenges of Personalized Medicine and Healthcare

-t

. Lifestyle optimization and disease prevention
Disease detection and prediction of disease progression (longitudinal)
Best interventions and treatments

LN

4. State-of-the-art tools for clinicians & healthcare professionals to
deliver high-quality care

5. Optimization of healthcare systems (quality, efficiency, cost
effectiveness, robustness, scalability)



Why ML-AIM can solve these challenges?

Unique expertise
Developing and combing new methods in

 Machine Learning and Artificial Intelligence
* Applied Mathematics and Statistics

« Operations Research

* Engineering, incl. distributed computing

Working with numerous clinical and medical collaborators to make an
impact on medicine and healthcare



ML-AIM group: http://www.vanderschaar-lab.com
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Making more informed and dynamic estimates about ¢ survival
by learning on diagnosis data and patient events over time
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TURING LECTURE
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Turing Lecture: Transforming medicine through Al-enabled healthcare pathways

https://www.youtube.com/watch?v=TWI-WIloWvfk



https://www.youtube.com/watch?v=TWI-WIoWvfk

Part 1: Automate the process of designing
Clinical Predictive Analytics at Scale

Hospital care

Cardiovascular disease """ . Cancer: Breast, Prostate, Colon
- Risk of CVD events
- Mortality risk after i Cystic Fibrosis
heart-failure
- Mortality risk - Asthma

Cardiac transplantation

Alzheimer’s disease



Machine Learning in Clinical Research

+ High predictive accuracy (for some diseases)

+ Data-driven, few assumptions
- Many ML algorithms: Which one to choose?
- Many hyper-parameters: Need expertise in data science

AUROC MAGGIC | UKBiobank | UNOSA | UNOSI

Best ML algorithm 0.80 + 0.004 0.76 + 0.002 0.78+0.002  0.65 +0.001
NN GradientBoost ToPs ToPs

Best Clinical Score 0.70 + 0.007 0.70 + 0.003 0.62+0.001  0.56 +0.001

Cox PH 0.75 + 0.005 0.74 + 0.002 0.70+0.001  0.59 +0.001

- Can we predict in advance which method is best?
- Can we do better than any individual method?
- Many metrics of performance (AUROC, AUPRC, C-index,

quality of well-being)



AutoPrognosis [Alaa & vdS, ICML 2018]:
A tool for crafting Clinical Scores
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Automated ML for clinical analytics (beyond predictions)

-------------------------------------------------------------------
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ICML 2018
Scientific Reports
Plos One

Survival Models

Competing Risks

Temporal Models

Causal Models

Lee, Alaa, Zame, vdS, AISTATS 2019

Alaa, vdS, NIPS 2017
Bellot, vdS, AISTATS 2018

In submission

Alaa, vdS, ICML 2019
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AutoPrognosis: Exemplary technology in Topol Review

Predictive analytics: E

Future technology Roles/functions change

Risk assessment and prognosis are crucial in many areas e As predictive analytics are increasingly used and

of medical practice. Predictive analytics, based on machine embedded in the electronic patient record, their use
learning, have recently been shown to provide more accurate will become more ubiquitous. They can be used by
predictions than clinical risk scores. An important recent clinicians and nurses to better diagnose the patient at
advance Is the AutoPrognosis'® framewaork, for risk score hand and by healthcare policy makers to enhance and
development in varied clinical settings. It can automatically individualise screening programmes, leading to better
discover the relevant risk factors and automatically makes allocaticon of clinical resources.

design choices on which algorithms to use. This framework

will provide medical clinicians and researchers, with little or Education/training requirements

no expertise in machine learning, the ability to develop the e Learn how to integrate predictive analytics into the care
risk scores needed for their particular situations, and diagnosis pathway, and interpret predictive results.

Solution e Educate/train clinicians and scientists to use frameworks
IPredictive analytic'® based on AutoPrognosis have shown like AutoPrognosis in order to design new predictive

a 35% improvement in prediction accuracy, compared analytics, which may be useful for a specific clinician or

to existing statistical methods or clinical risk scores, for healthcare organisation.

determining whether a cystic fibrosis (CF) patient should be
referred for a lung transplant.

The same AutoPrognosis framework was shown to estimate
cardiovascular risk more accurately than current risk scores,
especially for patients with co-morbidities such as diabetes.

Disease areas: Cystic Fibrosis, Cardiovascular Disease, Breast cancer,
Prostate cancer etc. v



Not only black-box predictions, also interpretations

@ Essential for trustworthiness, transparency etc.

Black-box model

? INVASE: Instance-wise Variable Selection using Deep Learning
[Yoon, Jordon, vdS, ICLR 2019]

@ Clinician-Al interaction using Reinforcement Learning [Lahav, vdS, NeurlPS
workshop 2018]

@ Metamodeling [Alaa, vdS, 2019] N



Interpretability using symbolic metamodeling
[A. Alaa & vdS, NeurlPS 2019]

From black-box models to white-box functions

Black-box Model f(x) Metamodel ¢(

Age Q ‘ ‘ Symbolic

T1 ‘ ‘ | Metamodeling _'

T J ’ } g(x) = G(x;6%) ’
0 9@

Blood ‘ ' 0.0 0.5
0* = arg mingee ¢(f(x), G(x;6)) Age (1)

pressure
A symbolic metamodel takes as an input a trained machine learning
model and outputs a transparent equation describing the model’s

prediction surface

Blood pressure (2)

g(x) = 2122 (1 — 220

X)
~;t:1)
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Part 2:
From Individualized Predictions to
Individualized Treatment Effects



Individualized Treatment Recommendations

Bob

Diagnosed with
Disease X

Which treatment is best for Bob?

@ Problem:
Estimate the effect of a treatment/intervention on an individual

16



RCTs do not support Personalized Medicine

Randomized Control Trials:
Average Treatment Effects

Population-level

Non-representative patients
Small sample sizes
Time consuming
Enormous costs

Adaptive Clinical Trials
[Atan, Zame, vdS, AISTATS 2019]
[Shen, van der Schaar, 2019]
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Delivering Personalized (Individualized) Treatments

Randomized Control Trials:
Average Treatment Effects

Population-level

Non-representative patients
Small sample sizes
Time consuming
Enormous costs

Machine Learning:
Individualized Treatment Effects

Patient-centric

Real-world observational data
Scalable & adaptive implementation
Fast deployment
Cost-effective

[Atan, vdS, 2015, 2018]

[Alaa, vdS, 2017, 2018, 2019]

[Yoon, Jordon, vdS, 2017]

[Lim, Alaa, vdS, 2018]

[Bica, Alaa, vdS, 2019] 18



Potential outcomes framework (Neyman, 1923

Observational data (X;, W;,Y;) X

@ Each patient; has features X, ¢ X ¢ R?

@ Two potential outcomes Yi(l),Yi(O) cR

@ Treatment assignment W; € {0,1}

W Factual outcomes
1

=1
vy (1) (0)
;N v, =Wy 4 (1 - wy)Y,

s - Causal effects
W, =0 Y T(x)=E [Y.(l) — Y;(O) ‘ X; = ZE]

1/
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Assumptions

No unmeasured
confounders (Ignorability)

PW=1|X=2z) PW=0|X=ux)
@ Hidden

Common support

Observed

Our work on hidden confounders
[Lee, Mastronarde, van der Schaar, 2018]
[Bica, Alaa, van der Schaar, 2019]

20



The learning problem

@ Response surfaces
fi(z) =E[YD | X = z]

fo(x) =E[Y 9| X = 2

@ Causal effects
T(x) = f1(z) — fo(x)

2 Observational data
Wi=1 (X’M }/;)
(X’L'a Wia l/;)

— oy
--
-~y
~y

~
------l

h---
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Beyond supervised learning...

? “The fundamental problem of causal inference”
is that we never observe counterfactual outcomes

Training examples Ground-truth causal effects
Wy =
X1 ' # Yl(l) Y1(1) - Yl(O)
"2 =0 (0 1
X2 ' ‘ Y2(0) Y2 - Y2
W, =1

x. 4 v, v -



Causal modeling # predictive modeling

1- Need to model interventions (X;;W;,Y;)

2- Selection bias - covariate shift:
training distribution = testing distribution

P(X|W=1) P(X|W =0)

A NN,

Training distribution Testing distribution

23



Previous works on treatment effects

p Bayesian Additive Regression Trees (BART) [Chipman et. al, 2010], [J. Hill, 2011]

g Causal Forests [Wager & Athey, 2016]

g Nearest Neighbor Matching (KNN) [Crump et al., 2008]
p Balancing Neural Networks [Johansson, Shalit and Sontag, 2016]

g Causal MARS [Powers, Qian, Jung, Schuler, N. Shah, T. Hastie, R. Tibshirani, 2017 ]

I Targeted Maximum Likelihood Estimator (TMLE) [Gruber & van der Laan, 2011]

B Counterfactual regression [Johansson, Shalit and Sontag, 2016]

CMGP [Alaa & van der Schaar, 2017]

No theory, ad-hoc models

24



A first theory for causal inference - individualized treatment effects

[Alaa, van der Schaar, JSTSP 2017][ICML 2018]

{ What is possible? ] { How can it be achieved? ]

(Fundamental limits) (Practical implementation)

25



Fundamental limits

Z=(X,W,)Y) ~ Py

E T : estimated causal effect
I Precision in estimating heterogeneous effects (PEHE) [Hill, 2011]

to(T) = |T(X) - T(X)|2

Minimax estimation loss: min max Eg(ff)
T f07f1

Most “difficult”
Best estimate response surfaces

Minimax loss = information-theoretic quantity,
independent of the model.

26



Theoretical Foundations

@ Theorem [Alaa & van der Schaar, JSTSP 2017]

fo(z) has dj relevant dimensions in a Holder space H
f1(x) has d; relevant dimensions in a Holder space /"

If dy < min{d,n}, w € {0,1}, then

1 0 1 —1
min max Eg(f) — 0 (n(HE(jmvgq)) )
T f07f1

27



Characterizing response surfaces

@ We prove that the minimax estimation loss:

I Depends on the complexity of fo(z) and f(z)

fo(x) has dj relevant dimensions in a Holder space H®°
f1(%) has d; relevant dimensions in a Holder space H"

Sparsity d Smoothness «

N

-/M)
g

28




Theory — what have we learned?

log(R)
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@ Handling selection bias @ ML model and hyperparameter
@ Sharing training data tuning

between response surfaces -



Multi-task Gaussian Processes (aiaa & van der Schaar, NIPS 2017]

@ Prior on vwRKHS = Multi-task Gaussian Process

fo, f1 ~GP(0,Kpg, 3,) Matern kernel = Prior over HPo « H51

Ko(z,2') = Ag kg, (z,2") + A1 kg, (2, 2")

\

Posterior potential outcomes distribution Posterior ITE distribution
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Multiple Treatments: GANITE [Yoon, Jordon, vdS, ICLR 2018]

Estimation of Individualized Treatment Effects
using Generative Adversarial Nets

Risk of Recurrence vs. Treatment Options

B MNoTreatment B Radiotherapy [ Chemotherapy [ Chemo + Radiotherapy

50%

40%
KL A Mo Treatmont

-i:f LN oy
KA Chemo + Radi...
I_lm B

2056

205

10%

0%

One-Year Fisk [Populstion-based) Treatment Propenaity Scose




But how can we know how to select a model?

Q@ Precision in estimating heterogeneous effects (PEHE) [Hill, 2011]

lo(T) = |T(X) — T(X)|3

@ Supervised learning - cross-validation!

A

Training

Testing i




Validating causal inference models

@ No explicit label: cannot apply supervised cross-validation.

Testing set True causal effects
Wi=1
1 0
‘ Yl(l) Yl( ) _ Yl( )
X1
D S o i 10
' - V" LONRRE
X2 ° °
W, =1
=) v, Vi) - Y
Xy

@ Goal: developing a similar procedure for causal inference

Solution: Alaa and van der Schaar, ICML 2019
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A performance metric is a statistical functional

@ A functional is a function of a function.

@ A statistical functional is a function of a distribution.

PEHE lo(T) = |T(X) — T(X)|I?

Statistical functional f(pe) Z = (X,W. y (0) Y(l)) ~ Py

Empirical measure 0, f(Z) = 1 S, (T(X:) — (v - v,¥))

34



Taylor series approximation

@ The value of a function at a given input can be predicted using
its value and (higher-order derivatives) at a proximal input.

35



Analogy with Taylor series approximation

@ The performance of a causal inference model is a functional
of the data-generating distribution Pg.

@ Functional = a function of a function.

R dego (T)
£y (T) A RN True distribution

< &

Synthetic distribution 90
with known ’ »

counterfactuals N

36



Functional calculus: von-Mises expansion (VME)

@ A distributional analog of Taylor expansion [Fernholz, 1983]

~ ~ .(1) ~
0o, (T) = £, (T) + / 6" (2 T)d(Ps, — Py,)

1 «(2)

+ 5 EGO (Z; f)d(]P)gl — P90)2 T ...

@ Influence functions & Derivatives

We can predict the performance of a causal inference model using
the influence functions of its loss on a “similar” synthetic dataset.

37



Estimating a model’s performance

@ First-order “Taylor approximation”
Influence function

Inaccessible £5(T) l
empirical measure <€ >€ >
True distrib < >
rue distribution ~
A fg(T)

v - W, A
0o(T) ~ £,(T) + / 6 (2 D)@y - P;)
t* 1

Synthetic (Plug-in) Influence function
distribution

\ J
|

Accessible empirical
measure
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Estimating a model’s performance

@ No need to simulate an entire observational dataset: just

synthesize counterfactuals!

Step 1: Plug-in estimation

I Plug-in model T

A~

I Plug-in PEHE loss £;(T)

Step 2: Bias correction

~ ~ .(1 ~
2o(T) = £;(T) +/£é (2, T)dP,

I fi(2)

X

X {7
fo(x) £¥ i

39



Consistency and efficiency

Plug-in
@ Theorem A mode
S(m) r
Let ¢, (7) be an IF-based estimator Traini
using truncated m-term VME. raining Model
T
fo(z) isina Holder space H*°
fi(x) isin a Hélder space ™! Testing i é(m)(f)

If plug-in model is minimax optimal:

A ~ -~ 1 _ 2(eghay)(m+1)
gglm) (T) — EQ(T) =0 (\/ﬁ Vn 2(apgAo)td )

When enough number of VME included: \/n - consistent!

40



Automating causal inference!

@ Selecting the right model for the right observational study.

@ Collection of all models published in ICML, NeurlPS and ICLR

between 2016 and 2018

————————————————————

7’ N
\

-

|

Observational
Data

M*

:JV Causal Multitask GP
\

S 5 7

-

————————————————————

Candidate Models m

Tl

l’ \ 9
- Causal Forest —?—LP

> GAN-ITE —t—

M
d

Model Validation

T M

!

GAN-ITE

BNN ICML 2016
CMGP NIPS 2017
TARNet ICML 2017
CFR Wass. ICML 2017
CFR MMD ICML 2017
NSGP ICML 2018
GAN-ITE ICLR 2018
SITE NIPS 2018
BART

Causal Forest
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Results

@ Average performance on the 77
benchmark datasets.

@ No absolute winner on all datasets.

@ |F-based selection is better than
any single model.

@ Factual selection is vulnerable to
selection bias.

Method

% Winner

BNN

3%

CMGP

12%

NSGP

17%

TARNet

8%

CFR Wass.

9%

CFR MMD

12%

GAN-ITE

7%

SITE

7%

BART

15%

C. Forest

7%

Random

10%

Factual

53%

IF-based

72%

Supervised

84%




Machine Learning and Clinical Trials

Randomized Control Trials

Research Question

Designing a
clinical Trial

Patient recruitment

Conducting the trial

Disseminating Results

Clinical practice

>
Time Consuming
» +

Enormous Costs
T

» Small sample

Sizes

<+

» Population-level
conclusions

Machine Learning can
Transform RCTs

@ Post-hoc subgroup analysis for

previously conducted clinical trials.

@ Recommender systems for

individualized treatment planning.

@ Designing clinical trials for new

drugs using data for similar drugs.

Patient-centric, cheap,
big data, quick
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Machine Learning & Medicine: Vision

Clinical Linked EHR Data Clinical Research
Practice

", Observational
' Data

Data-induced

Learning Genetic

............................ associations
Pharma Augmented
MD

Discovery

Causal Machine ./ Data-induced *.
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Home Prof. Mihaela van der Schaar Group Members Research Publications Clinical Support Funding Videos Software News

@& ML'AIM Machine Learning and Artificial Intelligence for Medicine

Research Laboratory led by Prof. Mihaela van der Schaar

Details about our algorithms:
http://www.vanderschaar-lab.com

Details about our software:
http://www.vanderschaar-lab.com



