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ML-AIM Group aims to transform 

medicine and healthcare 

by developing new methods in 

Machine Learning & Artificial Intelligence



The 5 Challenges of  Personalized Medicine and Healthcare  

1. Lifestyle optimization and disease prevention

2. Disease detection and prediction of  disease progression (longitudinal)

3. Best interventions and treatments

4. State-of-the-art tools for clinicians & healthcare professionals to 
deliver high-quality care

5. Optimization of  healthcare systems (quality, efficiency, cost 
effectiveness, robustness, scalability)



Why ML-AIM can solve these challenges?

Unique expertise

Developing and combing new methods in

• Machine Learning and Artificial Intelligence

• Applied Mathematics and Statistics

• Operations Research

• Engineering, incl. distributed computing

Working with numerous clinical and medical collaborators to make an 
impact on medicine and healthcare



ML-AIM group: http://www.vanderschaar-lab.com
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https://www.youtube.com/watch?v=TWI-WIoWvfk

https://www.youtube.com/watch?v=TWI-WIoWvfk
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Cardiovascular disease

- Risk of  CVD events

- Mortality risk after 

heart-failure

- Mortality risk –

Cardiac transplantation

Hospital care

Cancer: Breast, Prostate, Colon 

Asthma

Alzheimer’s disease

Cystic Fibrosis

Part 1: Automate the process of  designing 

Clinical Predictive Analytics at Scale



+  High predictive accuracy (for some diseases)

+  Data-driven, few assumptions

- Many ML algorithms: Which one to choose?

- Many hyper-parameters: Need expertise in data science

- Can we predict in advance which method is best?

- Can we do better than any individual method?

- Many metrics of  performance (AUROC, AUPRC, C-index, 

quality of  well-being)

Machine Learning in Clinical Research

AUROC MAGGIC UK Biobank UNOS-I UNOS-II

Best ML algorithm 0.80 ± 0.004 0.76 ± 0.002 0.78 ± 0.002 0.65 ± 0.001

NN GradientBoost ToPs ToPs

Best Clinical Score 0.70 ± 0.007 0.70 ± 0.003 0.62 ± 0.001 0.56 ± 0.001

Cox PH 0.75 ± 0.005 0.74 ± 0.002 0.70 ± 0.001 0.59 ± 0.001



AutoPrognosis [Alaa & vdS, ICML 2018]:

A tool for crafting Clinical Scores
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Pipeline configuration



Automated ML for clinical analytics (beyond predictions)
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Prediction

Survival Models

Competing Risks

Temporal Models

Causal Models

Lee, Alaa, Zame, vdS, AISTATS 2019

Alaa, vdS, NIPS 2017

Bellot, vdS, AISTATS 2018

In submission

Alaa, vdS, ICML 2019

ICML 2018

Scientific Reports

Plos One



AutoPrognosis: Exemplary technology in Topol Review
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Disease areas: Cystic Fibrosis, Cardiovascular Disease, Breast cancer, 

Prostate cancer etc.



Not only black-box predictions, also interpretations
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Essential for trustworthiness, transparency etc.Transparency

Black-box model

Predictions (confidence) 

+

Explanations

INVASE: Instance-wise Variable Selection using Deep Learning 
[Yoon, Jordon, vdS, ICLR 2019]

Metamodeling [Alaa, vdS, 2019]

Clinician-AI interaction using Reinforcement Learning [Lahav, vdS, NeurIPS

workshop 2018]



From black-box models to white-box functions
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A symbolic metamodel takes as an input a trained machine learning 

model and outputs a transparent equation describing the model’s 

prediction surface

Black-box

Interpretability using symbolic metamodeling 

[A. Alaa & vdS, NeurIPS 2019]



Part 2:

From Individualized Predictions to 

Individualized Treatment Effects
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Bob

Which treatment is best for Bob? 

Diagnosed with 

Disease X

Problem: 

Estimate the effect of a treatment/intervention on an individual

Individualized Treatment Recommendations



RCTs do not support Personalized Medicine
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Randomized Control Trials:

Average Treatment Effects

Non-representative patients

Small sample sizes

Time consuming 

Enormous costs

Population-level

Adaptive Clinical Trials 

[Atan, Zame, vdS, AISTATS 2019]

[Shen, van der Schaar, 2019]



Delivering Personalized (Individualized) Treatments
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Randomized Control Trials:

Average Treatment Effects

Non-representative patients

Small sample sizes

Time consuming 

Enormous costs

Machine Learning:

Individualized Treatment Effects

Population-level Patient-centric

Real-world observational data

Scalable & adaptive implementation

Fast deployment

Cost-effective

[Atan, vdS, 2015, 2018]

[Alaa, vdS, 2017, 2018, 2019]

[Yoon, Jordon, vdS,  2017]

[Lim, Alaa, vdS, 2018]

[Bica, Alaa, vdS, 2019]



Potential outcomes framework [Neyman, 1923]
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Each patient    has features

Observational data

Factual outcomes

Causal effects

Two potential outcomes

Treatment assignment



Assumptions
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No unmeasured 

confounders (Ignorability)
Common support

Observed Hidden

Our work on hidden confounders

[Lee, Mastronarde, van der Schaar, 2018]

[Bica, Alaa, van der Schaar, 2019]



The learning problem
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Response surfaces

Causal effects

Observational data



Training examples

Beyond supervised learning…
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“The fundamental problem of causal inference”

is that we never observe counterfactual outcomes

Ground-truth causal effects

...
...
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1- Need to model interventions

2- Selection bias → covariate shift:

training distribution ≠ testing distribution 

Training distribution Testing distribution

Causal modeling ≠ predictive modeling



Previous works on treatment effects
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Bayesian Additive Regression Trees (BART) [Chipman et. al, 2010], [J. Hill, 2011]

Causal Forests [Wager & Athey, 2016]

Nearest Neighbor Matching (kNN) [Crump et al., 2008]

Balancing Neural Networks [Johansson, Shalit and Sontag, 2016]

Causal MARS [Powers, Qian, Jung, Schuler, N. Shah, T. Hastie, R. Tibshirani, 2017 ]

Targeted Maximum Likelihood Estimator (TMLE) [Gruber & van der Laan, 2011]

Counterfactual regression [Johansson, Shalit and Sontag, 2016]

CMGP [Alaa & van der Schaar, 2017]

No theory, ad-hoc models



A first theory for causal inference - individualized treatment effects
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AlgorithmsTheory

What is possible? How can it be achieved?

(Fundamental limits) (Practical implementation)

[Alaa, van der Schaar, JSTSP 2017][ICML 2018]



: estimated causal effect

Precision in estimating heterogeneous effects (PEHE) [Hill, 2011]

Fundamental limits

26

Minimax loss = information-theoretic quantity, 

independent of  the model.

Minimax estimation loss:

Best estimate

Most “difficult” 

response surfaces



Theoretical Foundations
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Theorem [Alaa & van der Schaar, JSTSP 2017]

has      relevant dimensions in a Hölder space

has      relevant dimensions in a Hölder space

If                                                    , then 



Characterizing response surfaces
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We prove that the minimax estimation loss:

Depends on the complexity of             and

has      relevant dimensions in a Hölder space

has      relevant dimensions in a Hölder space

Sparsity  Smoothness  
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We want models that do well for small and large samples

Small sample regime Large sample regime

Handling selection bias

Sharing training data 

between response surfaces

ML model and hyperparameter 

tuning

Theory – what have we learned?



Multi-task Gaussian Processes [Alaa & van der Schaar, NIPS 2017]
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Prior on vvRKHS = Multi-task Gaussian Process

Matern kernel = Prior over

Posterior potential outcomes distribution Posterior ITE distribution

Individualized 

uncertainty measure



Multiple Treatments: GANITE [Yoon, Jordon, vdS, ICLR 2018]



But how can we know how to select a model?

Supervised learning → cross-validation!

Training

Testing

Precision in estimating heterogeneous effects (PEHE) [Hill, 2011]



Testing set

Validating causal inference models
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True causal effects

...
...

No explicit label: cannot apply supervised cross-validation.

Goal: developing a similar procedure for causal inference

Solution: Alaa and van der Schaar, ICML 2019



A performance metric is a statistical functional

34

A functional is a function of a function.

A statistical functional is a function of a distribution. 

PEHE

Statistical functional

Empirical measure



Taylor series approximation
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The value of a function at a given input can be predicted using 

its value and (higher-order derivatives) at a proximal input.



Analogy with Taylor series approximation
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The performance of a causal inference model is a functional

of the data-generating distribution       .

Functional = a function of a function.

Synthetic distribution 

with known 

counterfactuals 

True distribution



Functional calculus: von-Mises expansion (VME)
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A distributional analog of Taylor expansion [Fernholz, 1983]

Influence functions ↔ Derivatives

We can predict the performance of a causal inference model using 

the influence functions of its loss on a “similar” synthetic dataset.



Estimating a model’s performance 
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First-order “Taylor approximation”

Synthetic (Plug-in) 

distribution 

True distribution

Influence function

Inaccessible 

empirical measure

Accessible empirical 

measure

Influence function



Estimating a model’s performance 
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No need to simulate an entire observational dataset: just 

synthesize counterfactuals!

Step 1: Plug-in estimation

Step 2: Bias correction

• Plug-in model

• Plug-in PEHE loss
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Theorem

is in a Hölder space

is in a Hölder space

If plug-in model is minimax optimal:

Training

Testing

Let               be an IF-based estimator 

using truncated m-term VME.

Plug-in 

model

When enough number of VME included: 𝑛 - consistent!  

Consistency and efficiency

Model



Automating causal inference!
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Selecting the right model for the right observational study.

Collection of all models published in ICML, NeurIPS and ICLR

between 2016 and 2018.

BNN ICML 2016

CMGP NIPS 2017

TARNet ICML 2017

CFR Wass. ICML 2017

CFR MMD ICML 2017

NSGP ICML 2018

GAN-ITE ICLR 2018

SITE NIPS 2018

BART

Causal Forest



Results
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Average performance on the 77 

benchmark datasets.

Method % Winner

BNN 3%

CMGP 12%

NSGP 17%

TARNet 8%

CFR Wass. 9%

CFR MMD 12%

GAN-ITE 7%

SITE 7%

BART 15%

C. Forest 7%

Random 10%

Factual 53%

IF-based 72%

Supervised 84%

No absolute winner on all datasets.

IF-based selection is better than 

any single model.

Factual selection is vulnerable to 

selection bias.



Machine Learning and Clinical Trials
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Randomized Control Trials

Research Question

Designing a 
clinical Trial

Patient recruitment

Conducting the trial

Disseminating Results

Clinical practice

Time Consuming 
+

Enormous Costs
+

Small sample 
Sizes

+
Population-level

conclusions

Patient-centric, cheap, 
big data, quick

Machine Learning can 

Transform RCTs

Recommender systems for 
individualized treatment planning.

Designing clinical trials for new 
drugs using data for similar drugs.

Post-hoc subgroup analysis for 
previously conducted clinical trials.



Machine Learning & Medicine: Vision
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Linked EHR Data
Clinical 

Practice
Clinical Research

Pharma OMICS

Observational
Data

Data-induced
Genetic 

associations

Data-induced
Causal 

Discovery

Machine
Learning

Augmented

MD



Details about our software: 
http://www.vanderschaar-lab.com

Details about our algorithms: 
http://www.vanderschaar-lab.com


