Using data-adaptive methods to investigate

 causal conditional treatment effects: towards personalised treatment regimes
Karla DiazOrdaz

- @karlado

CENTRE for
STATISTICAL
METHODOLOGY

The
AlanTuring Institute

- Big questions in Comparative effectiveness/ policy evaluation:
- which treatment works?
- for whom?
- Can we optimise benefit by adding other treatments?
- often using observational data: confounding
- Understanding effect modifiers: personalised regimes

Motivating example: Treatment intensification of T2DM patients

aged ≥ 18 between Jan 2000 and July 2017, with a minimum of 12 months of prior registration in CPRD

Potential outcomes Y^{1} if exposed Y^{0} if unexposed	Causal estimand (involving counterfactuals) $\begin{gathered} A T E=E\left[Y^{1}-Y^{0}\right] \\ \text { or } \end{gathered}$
Outcome: Hba1c at 12, 24 48, 60 weeks	$\operatorname{CATE}(x)=E\left[Y^{1}-Y^{0} \mid X=x\right]$ for baseline (vector) X e.g. X baseline Hba1c and eGFR

Identifying assumptions

- No interference
- Consistency
- conditional exchangeability given C

Statistical estimand

(function of the observed data)

$$
\begin{aligned}
& \operatorname{ATE}= \\
& \qquad \begin{aligned}
& E[Y \mid A=1, C]-E[Y \mid A=0, C], \\
& \text { and/or } \\
& \operatorname{CATE}(x)= \\
& \quad E[Y \mid A=1, C, X=x] \\
& \quad-E[Y \mid A=0, C, X=x]
\end{aligned}
\end{aligned}
$$

- 3 possible treatments considered (after metformin)
- sulphonylureas (SUs),
- sodium-glucose co-transporter-2 inhibitors (SGLT2is) or
- dipeptidyl peptidase-4 inhibitors (DPP4is)
- 31 baseline variables as controls for confounding: age, sex, BMI, renal function, hba1c, statin use

Estimation:

- outcome regression
- Inverse probability of treatment weighting
- Doubly robust methods

Modelling assumptions

CURVE-FITTING METHODS
AND THE MESSAGES THEY SEND

Modelling assumptions

1. Outcome regression estimates the ATE by β :

$$
\mu(C)=E[Y \mid A, C]=\alpha+\beta A+\gamma^{T} C
$$

- outcome regression model is correctly specified
- can be checked from the data:
- Overfitting
- extrapolation

2. Propensity scores: we model $p(C)=\operatorname{Pr}[A=a \mid C]$

- Central result : if conditional exchangeability holds given C, then conditional exchangeability also holds given $p(C)$.
- Positivity of the treatment assignment

$$
0<\operatorname{Pr}[A=a \mid C]<1
$$

- $p(C)$ must be correctly specified
- Model misspecification is likely and difficult to diagnose
- Especially with poor overlap

"IM MAKING A SCATTER PLOT BUT I DON'T WANT TO."
 AND THIS IS THE ONCY DATA I COULD FIND."

"AS YOU CAN SEE, THIS MODEL SMOOTHLY FITS THE- WAIT NO NO DONT EXTEND IT AAAAAA!!"
- Original multinomial PS matching found:
- DR with multinomial PS found:

Treatment effect heterogeneity

- Perhaps the ATE is masking effects in certain populations
- We can estimate treatment effect modification curves: conditional ATE, given a predetermined variable X
- Very often we want to know how effects vary with covariates
- to explore mechanisms
- to target a specific population
- Understanding this can be important for finding optimal treatment regimes
- Recent interest in using machine learning to find drivers of treatment effect heterogeneity
- Problem: We don't know how to do uniformly valid confidence bands for CATE (x).

Two possible solutions

- Wager and Athey (JASA 2018) make progress by focusing on random forest with assumptions guaranteeing consistency : causal forest
- Chernozhukov et al. (arXiv:1712.04802) build on Double Machine Learning:
- Key: be less ambitious and focus on:
- is there heterogeneity?
- what are the characteristics of those with the largest treatment effect?
- Many other novel CATE with ML (e.g. Kunzel, Sekhon and Bickel, Luedtke and van der Laan, 2016)
- Next: we use causal forests to explore drivers of heterogeneity of T2DM treatments
- Ideally we would like to learn individual treatment effect:

$$
\mathrm{ITE}=Y_{i}^{1}-Y_{i}^{0}
$$

- but not feasible (Fundamental problem of causal inference)
- Instead, we target the CATE function for a given X :

$$
\tau(x)=E\left[Y_{i}^{1}-Y_{i}^{0} \mid X_{i}=x\right]
$$

- Causal Forests "customises" the random forest algorithm (Breiman 2001) to predict CATE instead of the observed outcomes
- Builds "causal trees": maximise heterogeneity in estimated treatment effect as opposed to minimise RMSE in outcome prediction
"Honesty" = Sample splitting:
- in one tree, i is either used to select splits or estimate $\tau(x)$
- Forests are formed using weighted aggregation
- weights chosen to minimise bias in $\tau(x)$
- Estimator is consistent asymptotically normal, inference is possible
- Implements an omnibus test of heterogeneity
- Step 1: Deal with confounding
- Use regression forests to obtain estimates of:
- outcome model $\mu(C)$ and
- PS model $p(C)$
- Use the residuals (outcome and exposure minus corresponding mean) as "transformed outcomes" (unconfounded if models correct)
- "double robust" property
- Step 2: Estimate "Raw" Causal Forests on the transformed outcomes
- Select most important effect modifiers using variable importance
- Step 3: Re-Estimate Causal Forest with most influential variables as effect modifiers
- Obtain estimates of individual treatment effects with Cls
- obtain omnibus test for heterogeneity
- Step 4: Estimate ATE and CATE

Heterogenous treatment effects and CATE for baseline Hba1c at 12w

Omnibus test of heterogeneity : $\mathrm{p}=0.0003$ (for all 3 treatments) MROPI
MEJKIN

SGLT2i

Baseline hba1c (mmol/mol)

DPP4i

Heterogenous treatment effects and CATE for baseline Hba1c at 48w

Omnibus test of heterogeneity : $p=0.05$ for SU vs the rest

MEI)KINI

Baseline hba1c ($\mathrm{mmol} / \mathrm{mol}$)
SGLT2i

Rank

ATE and Conditional treatment effects (each drug vs the others) MEI)ICINI

- Interpret in light of small numbers

N	$12 w$	$48 w$
SU	1402	763
SGLT2i	294	109
DPP4i	1138	524
total	2834	1396

- DR (non-ML) and CF (ML) approaches gave similar results for ATE
- CF helps detect heterogeneity in treatment effects
- Next step: double-robust machine learning for CATEs via g-estimation
- Maybe time-updated covariates explain better the treatment effect heterogeneity. Need to consider further treatment intensification
- Potential for remaining unobserved confounding
- ML developed for IV
- ATE: Belloni et al. 2012,
- for CATE via g-estimator: DiazOrdaz et al. 2018 (arXiv)

1. Wager S \& Athey S (2018) Estimation and Inference of Heterogeneous Treatment Effects using Random Forests, Journal of the American Statistical Association, 113:523, 1228-1242, DOI: 10.1080/01621459.2017.1319839
2. Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey W, Robins J. Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, Volume 21, Issue 1, 1 February 2018, Pages C1-C68
3. Athey S, Tibshirani J, Wager S. Generalized random forests. The Annals of Statistics. 2019;47(2):1148-78
4. Belloni A, Chen D, Chernozhukov V, Hansen C. Sparse models and methods for optimal instruments with an application to eminent domain. Econometrica. 2012 Nov;80(6):2369-429.
5. DiazOrdaz K, Daniel Rh, Kreif, N Data-adaptive doubly robust instrumental variable methods for treatment effect heterogeneity Pre-print on arXiv https://arxiv.org/abs/1802.02821
